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We show from a weak-coupling microscopic calculation that the most favored chiral superconducting
order parameter in Sr2RuO4 has a Chern number of jCj ¼ 7. The two dominant components of this order
parameter are given by sinð3kxÞ þ i sinð3kyÞ and sinðkxÞ cosðkyÞ þ i sinðkyÞ cosðkxÞ and lie in the same
irreducible representation Eu of the tetragonal point group as the usually assumed gap function,
sinðkxÞ þ i sinðkyÞ. While the latter gap function leads to C ¼ 1, the two former lead to C ¼ −7, which
is also allowed for an Eu gap function since the tetragonal symmetry only fixes C modulo 4. Since it was
shown that the edge currents of a jCj > 1 superconductor vanish exactly in the continuum limit, and can be
strongly reduced on the lattice, this form of order parameter could help resolve the conflict between
experimental observation of time-reversal symmetry breaking and yet the absence of observed edge
currents in Sr2RuO4.
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Sr2RuO4 is a layered perovskite material exhibiting a
transition at 1.5 K to an unconventional superconducting
phase. There is a lot of experimental evidence in favor of an
odd-parity, possibly topological, superconducting phase
[1–5]. These topological superconductors come in two
kinds: chiral and helical. Chiral superconductors break
time-reversal symmetry, have a Z topological number
(called hereby the Chern number C and defined below)
and can exhibit edge currents while helical superconductors
are time reversal symmetric, have a Z2 topological number
and can only exhibit time-reversed pairs of helicity currents.
Majorana states in chiral superconductors could be used for
topological quantum information processing [6].
Evidence for time-reversal symmetry breaking in

Sr2RuO4 was given by muon spin relaxation [7] and optical
Kerr effect [8] experiments. These experiments therefore
point towards a chiral superconductor. The order parameter
(OP) of a triplet superconductor is given by a three-

dimensional vector ~dðkÞ [2]. For a tetragonal crystal like
Sr2RuO4, this OP should transform according to a given
representation of D4h. Among the odd-parity irreducible
representations of D4h, the only one corresponding to a
chiral state is Eu, for which the order parameter should be
given by dz ¼ hx þ ihy (or dz ¼ hx − ihy for the opposite
chirality) where hx;y stands for any function of momentum
that transforms in the same way as sinðkx;yÞ under the
symmetry operations of D4h.
The simplest example of such a gap function is given by

dνz;0ðkÞ≡ sinðkxÞ þ i sinðkyÞ ∀ ν; ð1Þ

where ν is the band index. This OP has been used as a
prevailing assumption in the field. In this case, in analogy
with superfluid 3He-A, the superconducting state is sup-
posed to be driven by ferromagnetic fluctuations on the

fairly isotropic γ band, which is therefore the dominant
band in this scenario. The two other bands, called α and β,
are then merely spectators.
Since there are three bands at the Fermi level [see

Fig. 1(a)], the Chern number C is given by the sum of
the Chern number of each band Cν. The Chern number is
given by the winding of the complex phase of dz around the
Fermi surface (FS) of a given band, or it is equivalently given
by the Skyrmion number of the BDG Hamiltonian [10]:

(a) (b)

(c) (d)

FIG. 1 (color online). (a) Fermi surfaces for the tight-binding
model from Ref. [9]. (b) Order parameter dνz;0ðkÞ. The x and y
components of the arrows give the real and imaginary part of dz,
respectively. The units are arbitrary. (c),(d) Same plot for
dνz;RGðkÞ, dνz;FitðkÞ, respectively. Even though the gap has deep
minima, it remains finite at all k.
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Cν ¼
1

4π

Z
dkĤν · ð∂kxĤν × ∂kyĤνÞ; ð2Þ

where ~H ¼ fRe½dzðkÞ�;−Im½dzðkÞ�; EðkÞ − μg, Ĥ ¼
~H=j ~Hj, EðkÞ is the band dispersion, and μ is the chemical
potential. Considering dz;0 as shown in Fig. 1(b), it is easy to
see that Cν ¼ þ1 for a FS centered at (0,0) (i.e., a particle
band) and Cν ¼ −1 for a FS centered at ðπ; πÞ (i.e., a hole
band). Since there are two particle bands (β and γ) and one
hole band (α) in Sr2RuO4, the total Chern number in this
case is C ¼ 1.
The issue with this scenario is that a chiral super-

conductor with C ¼ 1 should exhibit a nonzero total
orbital angular momentum and edge currents, which have
been elusive so far despite intense scrutiny [11–13].
Spontaneous angular momentum and currents in chiral
superfluids have been studied extensively [14–19] and it
was confirmed recently that, for C ¼ 1, in both the
continuum and the lattice OP dz;0 case, these currents
are quite inevitable [20–23]. The apparent contradiction
between measurements of time-reversal symmetry breaking
and the absence of edge currents has been a long-standing
puzzle about Sr2RuO4 [4].
The dominant γ scenario was challenged by a renorm-

alization group (RG) calculation [24–26] that showed that,
in the weak-coupling limit, the quasi-one-dimensional (1D)
α and β bands are actually driving superconductivity
through antiferromagnetic fluctuations caused by the nest-
ing of their FSs [27–33]. The gap was therefore thought to
be dominant on these two bands whose total Chern number
is zero for an OP given by dz;0, thereby making Sr2RuO4 a
topologically trivial superconductor. STM data showed that
these bands have a gap amplitude in accordance with the
BCS theory given the value of Tc, thus supporting the idea
that the main gap is on the α and β bands [34]. The problem
with this scenario is that, from thermodynamic data, it is
believed that the gap should be of similar size on all three
bands [34–36], and that therefore γ should have a sizable
gap which must lead to a nontrivial topology and presum-
ably sizable edge currents. Furthermore, while the Chern
numbers of α and β are opposite in the case of dz;0, this is
not true in general, and it is in particular not true for the type
of order parameter favored by the nesting of α and β, as we
will show later on.
In a previous work, we extended the aforementioned RG

technique to include interband coupling and spin-orbit
coupling at the microscopic level [9]. The inclusion of
these effects was shown to be crucial since it enabled us to
obtain a similarly sized gap on all three bands without any
fine tuning, in agreement with thermodynamic data and in
contrast to previous results. Depending on the ratio of
Hund’s coupling J to Hubbard interaction U, this calcu-
lation could either favor a chiral state in the Eu represen-
tation, or a helical state in the A1u representation. Because
of the evidence of time-reversal symmetry breaking, we

will focus on the former case in this Letter [37]. The gap
function we obtain in the Eu representation dνz;RGðkÞ has a
highly nontrivial momentum dependence [see Fig. 1(c)],
indicative of pairing with a range longer than nearest
neighbors.
The main result of this work is the following: instead of

havingC ¼ þ1 for each particle band, like for dz;0 and for a
continuum px þ ipy state, the OP dz;RG has a Chern
number of −3 for the particle bands β and γ, as seen in
Fig. 1(c). This is allowed by symmetry, since being in the
Eu representation fixes C to be 1, but only modulo 4.
Adding Cα ¼ −1 (which has a different value from β and γ
since it is a holelike band instead of a particlelike band),
this leads to a total Chern number of −7. This is a dramatic
change compared to the continuum case and this shows
that, when lattice effects are strong, it can be misleading to
have continuum OPs in mind.
Before discussing the experimental implications of this

result, let us first give an intuitive understanding of the
source of this longer range pairing. Generically, the real
(imaginary) part of an OP in the Eu representation, called
hx (hy), can be written as a linear combination of all
possible harmonics gxðkÞ (gyðkÞ)that transform under D4h

in the sameway as sinðkxÞ [sinðkyÞ]. The most simple one is
obviously gx;1ðkÞ ¼ sinðkxÞ and corresponds to nearest-
neighbor pairing. We find that the nontrivial anisotropy
of dνz;RGðkÞ originates from two longer range pairing
components, gx;2ðkÞ≡ sinðkxÞ cosðkyÞ and gx;3ðkÞ≡
sinð3kxÞ, that are favored on all three orbitals. These
components are favored due to the presence of strong
fluctuations at the nesting wave vectors, ð�2π=3; πÞ and
ð�2π=3;�2π=3Þ, respectively.
In the weak-coupling limit, the effective interaction in

the odd-parity superconducting channel generically takes
the following form:

Vðk;qÞ ¼ −U2χðk − qÞ; ð3Þ

where χ is the susceptibility and has maxima at the nesting
wave vectors Q. The most favored superconducting OP
ΔðkÞ is the eigenvector of Vðk;qÞ with the most negative
eigenvalue. In order to achieve a maximally negative
eigenvalue, it is favorable to have

arg ½ΔðkþQÞ� ¼ arg ½ΔðkÞ�; ð4Þ

where k and kþQ both lie on the FS. Depending on the
value ofQ, this will favor certain gap functions over others.
As stated earlier, the driving force behind superconduc-

tivity is the strong fluctuations created by the nesting of the
α and β FSs. These FSs are generated by the small
hybridization of the dxz and dyz orbitals, whose unhybri-
dized FSs are given by almost straight lines at kx ¼ �kF
(respectively, ky ¼ �kF), with kF ≃ 2π=3. If we neglect
hybridization for now and focus on dxz, the nesting wave
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vectors are given by ð�2kF; πÞ and the constraint can be
rewritten as

arg ½ΔðkF − 2kF; ky þ πÞ� ¼ arg ½ΔðkF; kyÞ�: ð5Þ

For sinðkxÞ, these two values have opposite signs and it is
therefore expected for this pairing to be strongly suppressed
on the quasi-1D orbitals. On the contrary, the gap function
sinðkxÞ cosðkyÞ, corresponding to a second neighbor
pairing, satisfies the above constraint and is expected to
be favored [32,39].
Now, once hybridization is taken into account, the

nesting wave vector becomes Q ¼ ð�2kF;�2kFÞ≃
ð∓2π=3;∓2π=3Þ, in accordance with neutron data [42].
In this case, the condition from Eq. (4) is clearly satisfied by
the function sinð3kxÞ, corresponding to a pairing with a
neighbor separated by three lattice constants along
[100] [43].
The argument given so far only applied to the quasi-1D

orbitals. Yet, thanks to spin-orbit coupling, interorbital
hopping, and interorbital interaction, superconductivity
naturally arises on all the three bands, even though nesting
originates from α and β [9]. We therefore expect g2ðkÞ and
g3ðkÞ to be present along with g1ðkÞ on the quasi-2D
orbital dxy which dominantly contributes to γ at the
Fermi level.
The contribution of these gap functions to dνz;RGðkÞ can

be made explicit by using the following ansatz for the gap
in orbital space:

Δa
FitðkÞ ¼

X
j¼1;2;3

Δa
x;jgx;jðkÞ þ iΔa

y;jgy;jðkÞ;

gx;1ðkÞ ¼ sinðkxÞ;
gx;2ðkÞ ¼ sinðkxÞ cosðkyÞ;
gx;3ðkÞ ¼ sinð3kxÞ; ð6Þ

where a ¼ xz; yz; xy is the orbital index, gy;jðkx; kyÞ ¼
gx;jðky; kxÞ, and Δzy

y;j ¼ Δzx
x;j; Δzx

y;j ¼ Δzy
x;j ¼ 0; Δxy

x;j ¼
Δxy

y;j ∀ j. In order to compare this ansatz with
dνz;RGðkÞ, we apply to Δa

FitðkÞ a momentum-dependent
unitary transformation obtained by diagonalizing the spin-
orbit-coupled hopping Hamiltonian given in Ref. [9]. By
doing so, we obtain the corresponding gap in band space,
dνz;FitðkÞ. As seen in Figs. 1(c) and 1(d), we find
that dνz;FitðkÞ≃ dνz;RGðkÞ for the following parameters:
ðΔzx

x;1;Δ
zx
x;2;Δ

zx
x;3Þ ¼ ð0; 0.2; 1.0Þ and ðΔxy

x;1;Δ
xy
x;2;Δ

xy
x;3Þ ¼

ð0.18; 0.15;−0.3Þ.
Possible experimental implications of a higher Chern

number are now discussed [44]. First, C gives the number
of branches of chiral Majorana modes that can be found at
sample edges and at dislocations with a Burgers vector
whose component along [001] is nonzero [46–48].
This could lead to specific signatures in tunneling mea-
surements [34,49,50] and edge state spectroscopy using

angle-resolved photoemission spectroscopy. These chiral
Majorana modes lead to a quantization of the low temper-
ature thermal Hall conductance, whose value is propor-
tional to C [51,52]:

Kxy ¼
C
2

π2k2BT
6πℏ

; ð7Þ

where kB is Boltzmann constant and T is the temperature.
We now discuss implications for edge currents in

Sr2RuO4. Since charge is not conserved in a superconduc-
tor, the charge Hall conductance Gxy is not universal and
depends on the microscopic details, unlike Kxy. In the
continuum, due to rotational symmetry, there is only one
possible OP for a given value of C: dz ∝ ðpx þ ipyÞC.
Taking advantage of this, it was shown that having edge
currents and a total orbital angular momentum “of order 1”
is inevitable for a jCj ¼ 1 chiral superfluid in the con-
tinuum [20–23,53]. On the contrary, these two quantities
were shown to vanish in the case of jCj > 1 [20–23,54].
When lattice effects cannot be neglected, like for

Sr2RuO4, there are lots of possible OPs for a given
Chern number, and the aforementioned dichotomy present
in the continuum breaks down. In this case, the magnitude
of edge currents can vary greatly from one OP to the other,
even if they have the same Chern number. In order to
estimate the edge currents for the different OPs discussed in
this work, we follow the Ginzburg-Landau calculation
given in Refs. [22,23] (see also Refs. [17,41,55–57]). In
this theory, it can be shown that the current density coming
from band ν is proportional to the following coefficient:

k3;ν ∝ hhx;νðkÞhy;νðkÞvx;νðkÞvy;νðkÞiFSν ; ð8Þ

where hx and hy are the dimensionless real and imaginary
parts of the order parameter and vx;y are the Fermi velocity
components and the average is over the FS. The total
current is proportional to the average of the k3;ν coefficients
weighted by the respective density of states at the Fermi
level: k3 ¼ ð1=ρÞ ×P

νρνk3;ν. We note that, from Eq. (8), it
is confirmed that the Chern number and the value of edge
currents are not directly related for a lattice system. Indeed,

by applying to a given OP a rapid rotation of ~h over a small
portion of the FS, it is possible to change the Chern number
without changing k3;ν significatively. Such a modification
of the OP is not possible in the continuum because it breaks
rotational symmetry. In Table I, we give the values of k3;ν

TABLE I. Chern numbers and Ginzburg-Landau coefficients
(arbitrary units) for the two order parameters studied in this work.

OP Cα Cβ Cγ C k3;α k3;β k3;γ k̄3

dz;0 −1 1 1 1 0.50 0.99 1.14 1.0
dz;RG −1 −3 −3 −7 −0.04 0.07 −0.14 −0.06
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and k3 for dz;0 and dz;RG. We find that k3 is reduced by a
factor of roughly 20 for dz;RG compared to dz;0.
Since the gap dz;RG has deep minima, it is expected that

finite temperature effects should lead to a large current
reduction over a temperature scale set by this gap minima.
In order to estimate this effect for dz;RG [58], we perform a
Bogoliubov–de Gennes (BDG) calculation in a cylinder
geometry for the spin-orbit-coupled, three orbital hopping
Hamiltonian studied in Ref. [9]. In Fig. 2, we show the
spontaneous currents I0 and IRG for dz;0 and dz;RG,
respectively. We find that (1) at zero temperature, IRG is
reduced by a factor of 30 compared to I0, in overall
agreement with the Ginzburg-Landau result, and (2) unlike
in the case of dz;0, finite temperature effects generate a large
drop in current in the case of dz;RG. We emphasize that this
reduction should be very robust and appear both at edges
and domain walls, since it comes from an intrinsic property
of the bulk superconducting state.
There are other proposals for edge currents reduction

[19,41,57,59–61] that could combine with the present one.
In particular, the fact that sample edges are metallic, as
observed by in-plane tunneling spectroscopy [49], was
shown to generate a large reduction in predicted edge
currents [57]. Following Ref. [57], we model the metallic
edge by a region of width LM sites where the gap is set to
zero. As shown in Fig. 2, the presence of a metallic edge
generates an even larger drop of the current over a
temperature scale given by T=Tc ∼ ξ=LM, with ξ the
coherence length.
Experimental data [11–13] restrict edge currents to be 3

orders of magnitude smaller than the Matsumoto-Sigrist
prediction obtained for dz;0 [62], which is of the same order
as the value we find for I0 at T ¼ 0. As seen in Fig. 2, the
current predicted for dz;RG at the temperature relevant to
experiments (T=Tc ¼ 0.2) is roughly 3 orders of magnitude
smaller than I0 at T ¼ 0. This prediction could therefore

potentially explain the absence of measurable edge currents
generated fields.
Admittedly, the weak-coupling RG technique we used to

predict dz;RG is exact only in the U=t → 0 limit, while this
ratio is finite for a realistic material. The gap in the real
material will therefore be renormalized compared to the gap
function we find from the RG. Nevertheless, the gap
function dz;RG was shown to reproduce the specific heat
data [9]. Furthermore, dz;RG has deep minima on α and β, as
required by STM [34] (the gap function on γ cannot be
observed directly in STM because of atomic orbitals’
anisotropy). Also, finite coupling RG calculations have
shown similar results: the pairing on γ was shown to have a
substantial g2 component from a singular-mode functional
RG calculation [63] and a large g3 component was shown to
be favored from a calculation combining RG with the
constrained random phase approximation [43].
In conclusion, we have shown from a microscopic

calculation that a chiral state, whose two dominant gap
functions are sinð3kxÞ þ i sinð3kyÞ and sinðkxÞ cosðkyÞþ
i sinðkyÞ cosðkxÞ, is favored on the three bands of Sr2RuO4,
at least in the weak-coupling limit. This OP leads to a Chern
number of −7, in contrast to the previously assumed value
of þ1. This state naturally predicts both time-reversal
symmetry breaking and the possibility of a large reduction
of edge currents, thereby helping to reconcile two sets
of experiments: the optical Kerr effect and muon spin
relaxation on one side, and negative results obtained in the
search for edge currents on the other. The present results
could be an important piece of the puzzle in reconciling the
absence of edge currents with the presence of a chiral
superconducting state in Sr2RuO4.
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