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A novel approach is used for the simulation of decagonal quasicrystal (DQC) solidification and growth.
It is based on the observation that in well-ordered DQCs the atoms are largely arranged along
quasiperiodically spaced planes parallel to the tenfold axis, running throughout the whole structure in
five different directions. The structures themselves can be described as quasiperiodic arrangements of
decagonal columnar clusters (cluster covering) that partially overlap in a systematic way. Based on these
findings, we define a cluster interaction model within the mean field approximation, with effectively
asymmetric interactions ranging beyond the nearest neighbors. In our Monte Carlo simulations, this leads
to a long-range ordered quasiperiodic ground state. Indications of two finite-temperature unlocking phase
transitions are observed, and are related to the two fundamental length scales that are characteristic for the
system.
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Two fundamental questions remain open in our under-
standing of quasicrystals (QCs). One question regards how
QCs grow, and the other refers to their main stabilization
mechanism. The discussion about energy versus entropy
stabilization has been ongoing ever since the discovery of
QCs [1]. “Energy-stabilized” QCs would have a quasiperi-
odic ground state, while “entropy-stabilized” QCs would
be quasiperiodic on average only at sufficiently high
temperatures (T), and would transform into periodic
approximant structures at low T. If a tiling or covering
of a QC obeys matching or overlap rules, respectively, it is a
proof that it is strictly quasiperiodic. This does not work the
other way around; neither matching rules for tiles nor
overlap rules for clusters are growth rules. There were some
attempts, however, to circumvent this problem. For exam-
ple, one model [2] allows us to grow a 2D Penrose tiling
from a single “decapod defect.” This idea has also been
extended to a 3D layer model [3]. Classical matching rules
can also be replaced by the requirement of maximizing the
density of specific tile clusters [4]. For dynamic models, it
has been demonstrated both theoretically [5] and by
Monte Carlo (MC) simulations [6,7] that finite-T quasi-
periodic long-range order (LRO) cannot be achieved in 2D
systems with local interactions only (matching or overlap
rules). The 2D local-interactions-based systems are, there-
fore, in a so-called unlocked state at any finite T. The
structure of such unlocked phases can be described by
random tiling models [8–10], with only on-average qua-
siperiodic order. For 3D layer models of decagonal qua-
sicrystals (DQCs) based on local interactions, an unlocking
phase transition is observed at finite T [11,12]. The locked
phase exhibits true quasiperiodic LRO. An interesting
result for 2D systems was recently obtained by molecular
dynamics (MD) simulations with a two-minima radially
symmetric Lenard-Jones-Gauss potential [13], which

resulted in an entropy-stabilized DQC transforming into
an approximant at low T.
We use a completely different approach, which is based

on some fundamental experimental observations: (i) DQCs
show distinct cluster structures, with the atomic decoration
of these clusters breaking the tenfold symmetry [14–18].
(ii) Even rapidly solidified quasicrystals exhibit a good
LRO; therefore, it is reasonable to assume that clusterlike
arrangements of atoms exist already in the melt close to the
solidification temperature (see, e.g., [19]). (iii) The atoms
in DQCs are arranged on quasperiodically spaced flat
atomic layers parallel to the tenfold axis [20]. (iv) DQCs
are not layer structures in the crystal-chemical meaning,
because the chemical bonding within the quasiperiodic
layers does not differ from the chemical bonding between
them. Therefore, as also indicated by their growth mor-
phology, the structures of DQCs should be described in
terms of systematically partially overlapping 3D columnar
clusters instead of a stacking of quasiperiodic layers
[20,21].
Most experimentally derived DQC structure models

published so far have essentially the same building prin-
ciples: Decagonally shaped columnar clusters (of diameter
≈20 Å or τ inflated with τ ≈ 1.618, the golden mean)
decorate the vertices of a decagonal (d) tiling [in most cases
a pentagonal Penrose tiling (PPT)], thereby forming a
covering. Figure 1(a) shows an example of such over-
lapping decagonal clusters overlaying an electron density
map of d-Al-Cu-Rh [18] projected along the tenfold axis.
For a closer look, let us focus on one cluster, for instance,
the red one. The thin lines mark the traces of the quasilattice
planes (QLPs), which intersect the rhomb Penrose tiling
(RPT), outlined by thick black lines, in a specific way. The
properties of these particular sets of lines in the RPT, which
are not equivalent to the Ammann or de Bruijn lines, were
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previously demonstrated by Hoffman and Trebin [22]. The
RPT, with an edge length of a ≈ 4 Å, nicely matches the
strong electron density maxima. Each electron density
maximum is intersected by at least two QLPs; most heavy
atom maxima are crossed by five QLPs. There are three
typical interplanar distances between the QLPs: d1, d2, and
d3 ½d1 ¼ 0.5að3 − τÞ0.5; d2 ¼ d1=τ; and d3 ¼ d2=τ�. Every
second distance is d2; distances d1 and d3 occur according
to the Fibonacci sequence. The RPT outlined in black, and
thus the sets of QLPs outlined by thin red lines, originate at
the point indicated by the red filled circle on the cluster
boundary. In total there are 99 QLPs decorating each
cluster. The arrangement of QLPs within a cluster, like
the atomic decoration, exhibits only mirror symmetry. The
thin black lines in Fig. 1(a) illustrate how the QLPs run
from cluster to cluster throughout the structure. It is,
therefore, obvious that in the growth process of a DQC
the atoms arrange themselves along the QLPs, which is
exactly what can be observed experimentally in grown
DQCs. New clusters added to the structure continuously
extend the existing QLPs and are the origin of the new
QLPs as well. The growth morphology of DQCs is also
determined by the QLPs.
Now let us focus on the coarse-grained cluster model,

which consists of regular decagons decorated with five sets
of QLPs as illustrated in Fig. 1(a). Because the cluster
decoration reduces the tenfold symmetry to just mirror
symmetry, ten possible orientations of each cluster result.
Our basic assumption underlying the simulations is that it is
energetically most favorable for the clusters to arrange
themselves in a way that the maximum number of QLPs is

continued from cluster to cluster (the “QLP continuation
rule”). Discontinuations of QLPs increase the system
energy. This approach differs significantly from the match-
ing-rule approach, because a QLP originating from a given
cluster extends beyond the cluster up to a certain (adjust-
able) range. Therefore, it can influence more than just the
nearest-neighbor clusters. In our model, the clusters interact
through a QLP field, which is constructed within the mean
field approximation (MFA). The QLPs defined for a single
cluster extend beyond the cluster; thus, it can be said that
each cluster is a source of a QLP field. In turn, every cluster
interacts with the average QLP field produced by other
clusters, whose QLPs extend to its position. The energy of
each cluster is defined as the number of mismatches
between the QLPs in the given cluster and the QLP field.
Note that the QLP field produced by a cluster is strongly
dependent on the cluster orientation; this is fundamentally
different from the approach in Ref. [13], where the
interaction potential is radially symmetric.
Assuming that in the fully ordered DQC the clusters are

centered at the vertices of a perfect PPT, there are two
typical intercluster distances whose ratio is equal to τ. To
define the length scale of our model, we fix those distances
to be 1 and τ−1. In such a case, the edge length of the PPT is
fixed to 1, and the radius of the cluster (the center-to-vertex
distance), as well as the edge length of the underlying RPT,
is fixed to a ¼ ð3 − τÞ−0.5 ≈ 0.851 [Fig. 1(b)]. For the
indexing of the cluster vertices, we use the 5D hypercubic
basis of the 2D PPT. The basis vectors form a pentagonal
star, ai¼a(cosði2π=5Þ;sinði2π=5Þ);i¼1;2;…;5. Using
this basis, any vertex of the PPT can be indexed with a

(a) (b) (c)

(d)

FIG. 1 (color online). (a) Clusters of size 32 Å overlaying a part of the electron density of d-Al-Cu-Rh [18]. The thin lines, marked in
the respective colors, indicate the QLPs in the clusters. For example, in the red cluster, the red filled circle indicates the origin point of
RPT outlined in black and the QLPs. The thick lines inside each cluster correspond to the Gummelt overlap rules [23]. The thin black
lines illustrate how the QLPs are continued from cluster to cluster throughout the structure. (b) The ideal PPT is outlined in blue, the
ideal underlying RPT in black, and the decagonal clusters in red (arrows indicate cluster orientations). (c) Two possible hexagonal RPT
flip arrangements. The black contours indicate the original arrangements, the broken green lines the flipped ones. (d) A generalized
cluster flip as used in this Letter.
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quintuplet of integer indices, hi, which corresponds to a
subset of a ℤ-module of rank 5. For any vertex,
ðP5

i¼1 hiÞmod5 ¼ 1. A quasiperiodic structure can be
rearranged by cluster flips. There are two typical hexagonal
“flip arrangements” in RPT, shown in Fig. 1(c). In the case
of the skinny hexagon arrangement (two thin rhombs and
one thick rhomb), the tile flip corresponds to a cluster jump
and reorientation. In the case of fat hexagon arrangement
(two thick rhombs and one thin rhomb), the flip corre-
sponds only to a reorientation of the clusters. The length of
the cluster jump is equal to a−1 ¼ ð3 − τÞ0.5 ≈ 1.176. In our
model we use a somewhat generalized notion of cluster flip,
illustrated in Fig. 1(d). In a single update step, a cluster can
either be reoriented at its original position or be flipped to
one of ten surrounding positions, each having ten possible
orientations. Such generalized cluster flips ensure that our
model is, in principle, not equivalent to a tiling model. The
flips are not restricted to specific tile arrangements under-
lying the cluster structure. The indices of a vector describ-
ing a cluster flip fulfill the following equation:
ðP5

i¼1 hiÞmod5 ¼ 0. Flips can create intercluster distan-
ces, which are not found in a fully ordered structure. We
limited the shortest possible distance in the simulations
to τ−1.
For our MC simulations, we used a circular simulation

box with free boundary conditions. In the first approach,
called model 1, we studied two different system sizes with
radii of 12 and 22 [in the defined length scale, see Fig. 1(b)]
and assumed that the QLPs originating in any cluster run
through the whole simulation box–infinite interaction range
limit. The amount of clusters was fixed to the number of
vertices of a perfect PPT for a given system size. In our
case, there were 465 and 1585 clusters for the two studied
system sizes, respectively. In the second approach, called
model 2, we limited the range or QLPs originating in a
given cluster to the distance of 3, counting from cluster’s
origin (in the defined length scale). In this case the
interactions are not infinite range, but reach beyond the
nearest neighbors. We studied only the smaller system size,

i.e., with a radius of 12 and 465 clusters, since the
calculations are much more time consuming (the set of
clusters contributing to mean field changes for every
potential new cluster position and, thus, the mean field
has to be calculated from scratch). For model 2 another
assumption has to be made as well. In high T the cluster
orientations might not yet be definite due to high atom
mobility. To simulate this, we let a cluster in each position
have two orientations (they can be the same but this is not
required). The QLP field produced by a cluster is, then,
an average of the fields produced by the given cluster in
the two orientations. In low T the two orientations will
coincide. Under such assumptions, model 2 leads to
essentially the same results as model 1.
The simulation started with a structure randomization at

high temperature, allowing the formation of gaps between
clusters. Then, the system behavior was studied upon
systematic cooling. After initial equilibration at every
temperature step, in each MC sweep, we first determine
the QLP mean field from the current cluster arrangement.
For each cluster, in random order, we calculate its energy
(Ei) in all states that are geometrically available within the
generalized flip (a potential new position cannot be
occupied, and also no position within a radius of τ−1
from it can be occupied). The probability of cluster’s
transition to the ith accessible state can be written as
Pi ∝ expð−Ei=kTÞ; this is the heat-bath algorithm.
An ideal PPT can be obtained by the projection of a

subset of the vertices of a properly oriented 5D hypercubic
lattice onto parallel space selected by a decagonal window
(the so-called atomic surface, AS) in perpendicular space.
In other words, all the vertices of a PPT in parallel space
correspond to points located in a decagon in perpendicular
space. Therefore, if a cluster flips to a position that does not
belong to the perfect PPT, its corresponding point in
perpendicular space jumps out of the AS. A possible order
parameter (OP) can be defined as a fraction of all the cluster
centers whose positions in perpendicular space lie within
the AS. For a completely ordered system OP ¼ 1, and
for completely disordered system at infinite T and
infinite system size OP → 0. An ideal PPT can be sub-
divided into two interpenetrating sub(quasi)lattices, the first
with the shortest intercluster distance equal to 1, hereafter
called L-sublattice, and the second with the shortest
intercluster distance equal to τ−1, hereafter called
S-sublattice. In Fig. 2, snapshots of the simulated structures
for model 1 at different temperatures are shown in
perpendicular space. The decagonal AS is outlined in
black, and disordered clusters are marked in red.
Properly ordered L-sublattice clusters occupy a double-
pentagonal region inside the decagonal AS, and are marked
in blue. Properly ordered S-sublattice clusters are occupy-
ing the region inside the decagon but outside the double
pentagon, and are marked in green. It is clear that the two
sublattices order separately. At T ¼ 4 the structure is

FIG. 2 (color online). Snapshots of the simulated structure for
model 1 in perpendicular space at different temperatures. The
disordered clusters are marked in red. Properly ordered
L-sublattice clusters occupy a double-pentagonal region inside
the decagonal AS, and are marked in blue. Properly ordered
S-sublattice clusters are occupying the region inside the decagon
but outside the pentagon, and are marked in green.
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disordered. However, at T ¼ 1.2 the L-sublattice is already
fully ordered, whereas the S-sublattice is still disordered. At
T ¼ 0.1 both sublattices are fully ordered. Four videos,
showing the ordering of the simulated structures at different
temperatures, are available as Supplemental Material [24]
(Videos 1–3 show model 1, Video 4 shows model 2). The
color code in Videos 1 and 2 is the same as in Fig. 2; the
videos show simulations for the two different system sizes,
respectively. In these two simulations, the nucleus is
formed by 20 clusters at the origin of the simulation box
with fixed positions and orientations. This is not a require-
ment of the simulations, but it fixes the origin of the
simulation box, which is necessary for following the order
parameter throughout the simulation. Video 3 shows a
simulation without such a seed. In this case, the origin of
the grown structure in perpendicular space, and therefore
the location of the AS, is not known a priori, and varies for
every run of the simulation (it is only fixed below the phase
transition point for a given sublattice). In Video 3, the color
code from Video 1 is only applied at Ts below the
suspected unlocking phase transitions. The final result is
the same: the structure is fully ordered and its image in
perpendicular space is nicely decagonal. Video 4 shows the
ordering phenomenon for model 2. In high T the allowed
two cluster orientations mostly do not coincide. However,
as the T decreases, both allowed cluster orientations tend to
be the same. It is also clear that the L-sublattice orders at
higher T compared to model 1. In all the videos it is
apparent that, as mentioned before, the randomized high-T
structure has voids; this is because the model is not
equivalent to tiling models due to the generalized flip.
In Fig. 3, the OP and its susceptibility curves

[χ ¼ Nð1=TÞðhOP2i − hOPi2Þ] versus T are shown for
the two sublattices separately for model 1 (left) and model
2 (right). Naturally, the OP for the two sublattices is defined
as a fraction of cluster centers, whose perpendicular space
coordinates lie within the appropriate subregion of the AS.
The symbolN in the definition of susceptibility refers to the

number of clusters belonging to a given sublattice in the
fully ordered case. The color code is the same as in Fig. 3;
i.e., the curves related to the L-sublattice are marked in blue
and those related to S-sublattice are in green. Based on the
susceptibility maxima, indications of two phase transitions
are visible. The structure has three distinct ordering
regimes. In high T both sublattices are disordered. Then,
as the temperature goes down, the L-sublattice orders at
T ≈ 2.1 for model 1 and at T ≈ 3 for model 2. At
sufficiently low (but finite) T, the S-sublattice orders
(around T ≈ 0.9 for both models). The energy versus T
curves are smooth for both models, which suggests that the
possible phase transitions would have a continuous
character.
Based on the concept of QLPs, we have built a cluster

interaction model using the MFA. Effectively, the local
information about a cluster’s position and orientation is
mediated by the QLPs beyond the nearest neighbors (across
the whole structure in model 1 and up to r ¼ 3 for model
2). The interactions for both models strongly depend on the
cluster orientations. These two facts significantly distin-
guish our approach both from MD studies with radially
symmetric double-well potentials and from MC studies
based on matching (overlap) rules that are local. While the
MD studies lead to entropy stabilized quasiperiodic struc-
tures at high T and periodic ground state, the MC studies
give the LRO quasiperiodic structures only at T ¼ 0 and
entropy stabilized structures at any finite T (in 2D). Our
model leads to self-assembly of decagonal clusters into a
long-range ordered quasiperiodic structure at finite T.
Admittedly, for model 2 additional (physically feasible)
assumptions are necessary to obtain self-assembly: Two
possible orientations of each cluster are allowed to account
for the fact that in high T the cluster orientation might be
not yet definite. The reason why such an assumption would
cause the system to self-assemble to a LRO quasiperiodic
structure in the case of finite-range interactions is unclear;
however, we suspect that it has something to do with the

FIG. 3 (color online). (Left) Order parameters and susceptibility curves for model 1: Results for the simulation with 465 clusters are
shown with dashed lines and open circles, and results for the simulation with 1585 clusters are shown with solid lines and full circles.
Blue curves correspond to the L-sublattice (230 clusters for the smaller system and 775 for the larger system) and green curves to the
S-sublattice (235 clusters for the smaller system and 810 for the larger system). (Right) Order parameters and susceptibility curves for
model 2, in which only the smaller system size was studied.
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behavior of system entropy with T. Note that our model is
not a “templated” growth approach, because the QLP field
is recalculated after each cluster flip, and that the Gummelt-
like overlap rules in the ordered structure have an emergent
character; i.e., they are a result and not a prerequisite of the
model. The quasiperiodic state is here a ground state, stable
down to T ¼ 0. The model presented in this Letter is, of
course, greatly simplified. However, we believe the for-
mation of QLPs to be crucial during DQC growth, as it is
responsible for the propagation of quasiperiodic LRO.
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