
Probing the Excitations of a Lieb-Liniger Gas from Weak to Strong Coupling

F. Meinert,1 M. Panfil,2 M. J. Mark,1,3 K. Lauber,1 J.-S. Caux,4 and H.-C. Nägerl1
1Institut für Experimentalphysik und Zentrum für Quantenphysik, Universität Innsbruck, 6020 Innsbruck, Austria

2SISSA-International School for Advanced Studies and INFN, Sezione di Trieste, 34136 Trieste, Italy
3Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, 6020 Innsbruck, Austria

4Institute for Theoretical Physics, University of Amsterdam, 1090 GL Amsterdam, Netherlands
(Received 29 May 2015; revised manuscript received 23 July 2015; published 20 August 2015)

We probe the excitation spectrum of an ultracold one-dimensional Bose gas of cesium atoms with a
repulsive contact interaction that we tune from the weakly to the strongly interacting regime via a magnetic
Feshbach resonance. The dynamical structure factor, experimentally obtained using Bragg spectroscopy, is
compared to integrability-based calculations valid at arbitrary interactions and finite temperatures. Our
results unequivocally underlie the fact that holelike excitations, which have no counterpart in higher
dimensions, actively shape the dynamical response of the gas.
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Interacting quantum systems confined to a one-
dimensional (1D) geometry display qualitatively different
behavior compared to their higher-dimensional counter-
parts [1]. Systems of strongly interacting electrons recently
realized in electronic nanostructure devices [2,3] have
evidenced the breakdown of Landau’s Fermi liquid theory
of quasiparticles in one dimension, a world in which new
types of excitations emerge out of the inevitably collective
nature of the dynamics. Understanding these requires
approaches that go beyond Landau’s paradigm. The best
known, valid for sufficiently small temperatures and
energies, is the Luttinger liquid (LL) formalism [4].
When probing dynamical correlation functions, however,
one typically leaves this low-energy and large-wavelength
limit and enters a regime where even recent extensions of
the LL formalism to higher energies [5,6] cannot capture all
features. Instead, one must rely on nonperturbative calcu-
lations to understand the correct basis of excitations and
quantitatively explain experiments, a recent example being
spinon dynamics in quantum spin chains [7,8]. These
systems, however, lack the tunability required to track
the whole transformation occurring between the limits of
weak and strong coupling.
Very recently, systems of ultracold bosons have opened

up new routes to study strong correlation effects in one
dimension [9,10]. In particular, tuning the interaction
strength [11], as characterized by the dimensionless
Lieb-Liniger parameter γ [9], gives access to the full range
from weak (γ ≲ 1) to strong (γ ≫ 1) interactions and the
fermionized Tonks-Girardeau (TG) regime [10–14].
Moreover, the 1D Bose gas with contact interactions is
one of the few integrable many-body problems that allows
for the combining of experiment with numerically exact
studies of the excitation spectrum, making it an ideal setting
for observing interaction effects on dynamical correlation
functions [15]. In their seminal work [16,17], Lieb and

Liniger showed that next to a particlelike mode (Lieb-I
mode), which resembles Bogoliubov excitations in the limit
of weak interactions, a second mode naturally emerges
(Lieb-II mode) that stems from holelike excitations in the
effective Fermi sea in one dimension. The coexistence of
these two types of elementary excitations leads to a
significant broadening of the dynamical response func-
tions, clearly visible in the strongly interacting regime
[18,19] (see Fig. 1).
In this Letter, we measure the dynamical structure factor

(DSF) of the Lieb-Liniger Bose gas realized with ultracold
atoms and confined to 1D quantum tubes. Previous work
[15] addressed a fixed intermediate interaction regime
(γ ≃ 1). Here, the tunability of interactions allows us to
enter deeply into the strongly interacting TG regime. Our
analysis is based on careful disentangling of the exper-
imental traits, and it allows us to identify the role of the
Lieb-Liniger dynamics in shaping the response of the
system. Comparison of the measured spectra with state-
of-the-art numerical calculations [18,20] ranging from the
weakly to the strongly interacting regime allows for a clear
distinction between interaction and temperature effects and
demonstrates the contribution of the Lieb-II type excita-
tions to the response of the system.
Our experiment starts with a cesium Bose-Einstein

condensate (BEC) of typically 1.1 × 105 atoms confined
in a crossed dipole trap [21,22]. The BEC is adiabatically
loaded into an array of ≈4000 quantum wires created via
two mutually perpendicular retro-reflected laser beams
at a wavelength λ ¼ 1064.5 nm. At the end of the ramp
the lattice depth along the horizontal direction is
Vx;y ¼ 30ER, creating an ensemble of independent one-
dimensional “tubes” with a transversal trap frequency
ω⊥ ¼ 2π × 14.5 kHz oriented along the vertical z direction
[Fig. 1(a)]. Here, ER ¼ h2=ð2mλ2Þ is the photon recoil
energy with the mass m of the Cs atom. During lattice
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loading, the scattering length as is set to as ¼ 173ð5Þa0 via
a broad Feshbach resonance [23]. In the deep lattice we
then ramp as within 50 ms to the desired value in the range
10a0≲as≲900a0 to prepare the tubes close to the adiabatic
ground state. The ramp of as is carefully adapted to avoid
any excitation of breathing modes.
The gas in each tube is described by the Lieb-Liniger

Hamiltonian [16]

Ĥ ¼ −
ℏ2

2m

X

i

∂2=∂zi2 þ g1D
X

hi;ji
δðzi − zjÞ; ð1Þ

with g1D ¼ 2ℏω⊥asð1 − 1.0326as=a⊥Þ−1 the coupling
strength in one dimension [11,13,24] and a⊥ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmω⊥Þ

p
the transverse harmonic oscillator length.

The Lieb-Liniger parameter is then defined as γ ¼ mg1D=
ðℏ2n1DÞ, where n1D denotes the one-dimensional line
density [9]. The density sets the characteristic Fermi wave
vector kF ¼ πn1D of the system. In our experimental setup
we have to consider two sources of inhomogeneity. First,
the tubes are harmonically confined along the longitudinal
direction with a trap frequency ωz ¼ 2π × 15.8ð0.1Þ Hz.

This gives rise to an inhomogeneous density distribution
in each quantum wire. Second, the loading procedure leads
to a distribution of the number of atoms across the
ensemble of 1D systems [23]. For comparing measure-
ments with theoretical predictions, both effects can be
accounted for by averaging over homogeneous subsystems
in a local density approximation (LDA) [see insets to
Figs. 1(c) and (d)].
We probe the spectrum of elementary excitations via

two-photon Bragg spectroscopy [25]. In brief, the sample is
illuminated for 5 ms with a pair of phase coherent laser
beams at a wavelength λB ≈ 852 nm and detuned by
≈200 GHz from the Cs D2 line. The beams intersect at
an angle ϕ at the position of the atoms and are aligned such
that the wave vector difference points along the direction of
the tubes [Fig. 1(b)]. Its magnitude k ¼ 4π=λB sinðϕ=2Þ
sets the momentum transfer, while a small frequency
detuning ω between the laser beams defines the energy
transfer to the system. In linear response, the energy
absorbed from the Bragg lasers for a fixed pulse area
ΔEðk;ωÞ directly relates to the dynamical structure
factor Sðk;ωÞ ¼ R

dx
R
dteiωt−ikxhρðx; tÞρð0; 0Þi at finite

temperature T via ΔEðk;ωÞ ∝ ℏωð1 − e−ℏω=ðkBTÞÞSðk;ωÞ
with Boltzmann’s constant kB [26].
In our experiment, we probe the ensemble of 1D tubes at

a fixed k ¼ 3.24ð3Þ μm−1, which is comparable to typical
mean values for kF averaged over the sample [27]. The
absorbed energy as a function of ω is measured in
momentum space. For this, we switch off the lattice
potential quickly (within 300 μs) and allow for 50 ms time
of flight at a small positive scattering length of ≈15a0.
From the integrated line density along the z direction of the
tubes we extract hp2i and plot it as a function of ω.
The result for five different values of γ is depicted in
Figs. 2(a)–2(e).
The data sets cover the regime from weak to strong

interactions 0.1≲ γ ≲ 50 probed at 0.3≲ k=kF ≲ 1. The
variation in k=kF ensues from the change of the density
distribution in the tubes with increasing as, evolving from a
Thomas-Fermi profile at weak interactions towards the TG
profile at strong interactions. The values for γ and kF given
in Fig. 2 denote the average over the ensemble of 1D
systems, using the mean n1D in each wire calculated for
T ¼ 0 from the solution of the Lieb-Liniger integral
equations in LDA [23]. Error bars reflect mainly a
�10% uncertainty in the total atom number. A clear
interaction-induced broadening and shift of the spectra
with increasing γ is observed in accordance with the
calculated position of the Lieb-I and Lieb-II modes (vertical
dashed lines) [17]. We compare the data set in the strongly
interacting regime [Fig. 2(e)] to the calculated response for
an ensemble of trapped TG gases at zero temperature
averaged over the ensemble of tubes (dashed line) [23,28].
The agreement with the data underlines the contribution of
Lieb’s holelike excitation to the dynamical response.
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FIG. 1 (color online). Sketch of the experimental setup. (a) A
pair of retro-reflected laser beams creates an ensemble of ≈4000
independent one-dimensional Bose gases. (b) The excitation
spectrum is probed by illuminating the gas with a pair of Bragg
laser beams. (c)–(d) Zero-temperature dynamical structure factor
Sðk;ωÞ (value shown in gray scale) for a moderately (γ ¼ 3.3)
(c) and a strongly (γ ¼ 45) (d) interacting homogeneous gas.
The solid (dashed) line in (d) shows the dispersion of the Lieb-I
(Lieb-II) mode. Insets indicate averaging over an ensemble of
trapped systems. The thin lines show fixed momentum cuts at
representative densities. The corresponding values for k=kF are
indicated as vertical lines in the k − ω plane. The thick line shows
the averaged response SðωÞ in a local density approximation.
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Prior to a detailed discussion on the exact line shape
for finite γ and finite T, we attempt a simplified zero-
temperature analysis of our spectroscopy signal. A function
∝ ωGðωcÞ is fit to the data (solid lines), where the DSF
averaged over the ensemble of tubes is approximated by a
simple Gaussian function G centered at ωc. The extracted
ωc as a function of as is shown in Fig. 2(f) (circles). The
vertical lines denote the fitted FWHM. We find the spectral
weight of the data within the Lieb-I and Lieb-II modes
(solid lines) calculated using the ensemble-averaged values
for γ. Bogoliubov’s quasiparticle energy alone (dashed line)
does not explain the observed ωc with increasing γ ≳ 3. We
summarize the measured spectral position and width for
four selected values of γ in the dimensionless energy-
momentum plane in Fig. 2(g), withωF¼ϵF=ℏ¼ℏk2F=ð2mÞ.
Comparing this to the dispersion relation of Lieb’s particle

and holelike excitation, we observe a clear signature for the
contribution of both branches with increasing interactions,
finally approaching the limit of the excitation spectrum of
the fully fermionized Bose gas (shaded area).
We now turn to a detailed analysis of the spectral line

shape as a function of interaction strength and temperature.
The effect of temperature on the measurement of the DSF
arises from two distinct contributions. First, the DSF itself
is temperature dependent. This becomes most evident in the
TG limit of fermionized bosons. For kBT ≪ ϵF the effec-
tive Fermi sea in quasimomentum space has a sharp edge,
giving rise to a homogeneous continuum of excitations
lying between Lieb’s hole- and particlelike modes. When
kBT ∼ ϵF the Fermi edge washes out; this results in a
smoothing of the DSF, with its spectral weight being shifted
to higher energies [20]. Second, finite temperature affects
the density distribution in our 1D systems, leading to a
decreasing mean n1D with increasing T for fixed as. This
changes the average k=kF at which the tubes are probed.
For our theoretical analysis we take both effects into

account. First, we calculate the density distribution in each
of the tubes at a temperature T by numerically solving the
Yang-Yang integral equations for the 1D Bose gas [29]. The
DSF is evaluated at finite T via the ABACUS algorithm, a
Bethe ansatz-based method to compute correlation func-
tions of integrable models [30]. The effect of the trapping
potential is incorporated by making a LDA for each tube.
The response of the array of tubes is finally calculated by
weighting the contribution of each subsystem by the
number of atoms [23].
The result of our theoretical analysis for four different

values of γ is presented in Fig. 3 and is compared
to the corresponding experimental data [taken from
Figs. 2(b)–2(e)]. Although finite temperature leads to small
shifts and broadening of the excitation spectrum, the most
relevant contribution to the spectral shape stems from the
broadening of the dynamical structure factor with increas-
ing interactions. The analysis underlines the contribution of
holelike excitations to the overall response when entering
deep into the strongly correlated regime. Further, a reduced
χ2 analysis of our data with the computed spectra serves as
a thermometry tool in the tubes and points to gas temper-
atures in the range of 5 to 10 nK. A moderate increase in
temperature is seen for increasing values of γ [23].
So far, we have characterized the excitations in the

gas bymeasuring hp2i. Now,we analyze the full momentum
distribution nðpÞ of the excited 1D Bose gases. In
Figs. 4(a)–4(c) we plot the atomic line density after time
of flight, integrated transversally to the direction of the tubes,
which reflects the in-trap momentum distribution of the
atomic ensemble. The measurements are taken at three
different values of γ, ranging from theweakly to the strongly
interacting regime, and at Bragg excitation frequencies ω
slightly below (left column), just at (central column), and
slightly above (right column) the peak of the resonance.
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FIG. 2 (color online). Bragg-excitation spectra for different
values of the 1D interaction strength γ. (a)–(e) Transferred energy
∼hp2i (normalized to unit area) as a function of the Bragg
detuning ω. The scattering length is set to 15a0 (a), 173a0 (b),
399a0 (c), 592a0 (d), and 819a0 (e), giving an average
γ½kF=μm−1� of 0.12(5) [9(1)], 3.3(1) [4.4(2)], 11.0(4) [3.7(1)],
21.7(7) [3.5(1)], and 45(1) [3.3(1)], respectively. Solid lines
show fits to the data using a Gaussian multiplied by ω.
The vertical dashed lines indicate the position of the Lieb-I
(L1) and Lieb-II (L2) mode calculated with the averaged
values for γ [23]. The dashed line in (e) shows the calculated
response for ensemble-averaged trapped TG gases. (f) Central
excitation energy ωc extracted from the Gaussian fit model
as a function of as (circles). Solid (dashed) lines denote the
calculated position of the Lieb-I or -II modes (Bogoliubov mode).
The dotted lines indicate the energy of particle and hole
excitations in the TG limit. (g) ωc extracted from the data shown
in (a) (triangle), (b) (square), (c) (diamond), and (e) (inverted
triangle) plotted in the dimensionless energy-momentum
plane. Solid (dashed) lines denote the Lieb-I (Lieb-II) mode.
The shaded area shows the continuum of excitations in the TG
limit. Vertical lines in (f) and (g) give the fitted full width at half
maximum (FWHM).
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First, we recognize a dramatic qualitative change in nðpÞ
with increasing γ for all detunings presented. In the weakly
interacting regime [Fig. 4(a)], we observe a clear particle-
like excitation located at p ¼ ℏk, as expected from the
noninteracting limit. However, with increasing interactions
this feature smears out and evolves towards an overall
broadening of nðpÞ, indicative of a strong collective
response of the system to the Bragg pulse. This observation
demonstrates one of the key features of 1D systems: any
excitation to the system is necessarily collective, and,
therefore, leads to energy-broadened response functions,
in contrast to sharp coherent single-particle modes. This
broadening, however, only becomes clearly visible for
strong-enough interactions, where the holelike modes
become dynamically relevant.
In a further measurement, we attempt to quantify the

response in momentum space in more detail. Note that our
previous measurement of hp2i captures both a broadening
of the momentum distribution as well as an increase in
the mean momentum hpi. In order to separate both
contributions spectroscopically, we plot the relative change
δw of the width w of the central part of nðpÞ around
p ¼ 0 and hpi as a function of ω for different values of γ in
Figs. 4(d)–4(f). The data indicate how collective excitations
in the gas, expressed via energy deposition in w rather than
in hpi, become dominant with increasing γ. Interestingly,
the two curves peak at different values for ω. This
observation is confirmed by the momentum-space character
of elementary excitations in the interacting 1D systems,
which changes from a collective broadening for the Lieb-II
mode to a particlelike feature for the Lieb-I mode with
increasing ω [23].
In conclusion, we have measured the excitation spectrum

of a strongly correlated 1D system for a wide range of
interaction parameters. Comparison with integrability-
based calculations at finite temperature allows for a direct
observation of the contribution of the collective Lieb-II

mode to the DSF. Our results demonstrate the successful
application of an integrable model to analyze dynamics of
the 1D Bose gas. Furthermore, the collective nature of
elementary excitations in one dimension with increasing
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FIG. 3 (color online). Comparison of the Bragg-excitation spectra with theoretical predictions at finite temperature. Symbols depict
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top row with theoretical predictions for different temperatures.
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width δw of the central peak around p¼0 (triangles) as a function of
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interaction strength has been demonstrated through an
analysis of the momentum distribution. Our results pose
questions on the time evolution and potential equilibration
of these collective excitations. This could be seen as an
alternative quantum cradle setting [31] in which, instead of
colliding two highly energetic clouds of atoms, relatively
low-energy excitations propagate through the system, and
their individual features can then be more easily studied.
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