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We experimentally and theoretically study the diffraction phase of large-momentum transfer beam
splitters in atom interferometers based on Bragg diffraction. We null the diffraction phase and increase the
sensitivity of the interferometer by combining Bragg diffraction with Bloch oscillations. We demonstrate
agreement between experiment and theory, and a 1500-fold reduction of the diffraction phase, limited by
measurement noise. In addition to reduced systematic effects, our interferometer has high contrast with up
to 4.4 × 106 radians of phase difference, and a resolution in the fine structure constant of δα=α ¼ 0.25 ppb
in 25 h of integration time.
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Atom interferometers are a direct analogy to optical
interferometers, where beam splitters and mirrors send
a wave along two different trajectories. When the waves
are recombined, they can interfere constructively or
destructively, depending upon the phase difference Δϕ
accumulated between the paths. In light-pulse atom
interferometers, atomic matter waves are coherently split
and reflected using atom-photon interactions, which impart
photon momenta ℏk to the atoms.
In a Ramsey-Bordé interferometer, for example, the atom

(of mass m) moves away and back along one path while
remaining in constant inertial motion along the other path.
The phase difference Δϕ ¼ 8ωrT (T is the pulse separation
time) is proportional to the kinetic energy, and thus to the
recoil frequency ωr ¼ ℏk2=ð2mÞ. This enables state-of-the-
art measurements of the fine structure constant α [1] and
will help realize the expected new definition of the kilo-
gram in terms of the Planck constant [2,3]. Using multi-
photon Bragg diffraction [4,5] and simultaneous operation
of conjugate interferometers [6], the phase difference has
been increased to Φ ¼ 16n2ωrT (where the factor of 16
arises from taking the phase difference of the two inter-
ferometers), and Earth’s gravity and vibrations have been
canceled. Unfortunately, however, Bragg diffraction causes
a diffraction phase [2,7–9], which has been the largest
systematic effect in high-sensitivity atom interferometers
using this technique [2]. Here, we study the diffraction
phase in detail and show that it can be suppressed and
even nulled by introducing Bloch oscillations as shown in
Figs. 1(a) and 1(b). Bloch oscillations also increase the
measured phase shift to

Φ ¼ 16nðnþ NÞωrT; ð1Þ
where n > 1. We decrease the influence of diffraction
phases by an amount that is considerably larger than the

increase in sensitivity and are in fact able to null them by
feedback to the laser pulse intensity. With this increase in
signal and suppression of diffraction phase systematics, we
expect to see improvements in many applications of atom
interferometry, such as measuring gravity and inertial
effects [10–13], measuring Newton’s gravitational constant
G [14,15], testing the equivalence principle [16–22],
charge-parity-time and Lorentz symmetry [23], and per-
haps even antimatter physics [24] and gravitational wave
detection [25].
Diffraction phases occur between the waves reflected

and transmitted by a beam splitter and cause an unwanted
(usually) shift of the interference pattern in an interferom-
eter. In light-pulse atom interferometers with Raman beam
splitters, a pair of laser beams drive two-photon transitions
between two hyperfine states. Here, diffraction phases are

(a) (b)

FIG. 1 (color online). (a) Trajectories of our simultaneous
conjugate interferometers with Bloch oscillations. Gravity has
been neglected. The wiggly lines indicate laser pulses driving
Bragg diffraction; the shaded area marked “BO” represents the
Bloch oscillations. (b) Strong suppression of the beam splitter
phase shift in radians as a function of the number N of Bloch
oscillations for Bragg diffraction orders of n ¼ 1 − 8 (n ¼ 2 lies
outside the scale at ~Φ0 ∼ −0.6). The inset shows an enlarged part
for large Bloch oscillation numbers N.
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caused by differential ac Stark effects between these states
and can be nulled by choosing a certain intensity ratio of the
laser beams [26]. While these can be several radians large,
Raman systems are very nearly perfect two-level systems,
i.e., the atom can remain in the original state or be
transferred, but not lost to a third state. The last half of
the atom interferometer is therefore a time-reversed mirror
image of the first half, and diffraction phases cancel unless
the symmetry is broken by technical imperfections. (Atoms
undergoing incoherent single-photon events do not inter-
fere and thus do not cause phase offsets.) In Bragg
diffraction, differential Stark shifts are absent because
the atoms do not change their internal quantum state.
Coherent coupling of the atoms to unwanted momentum
states, however, creates diffraction phases and causes atom
loss, breaking the time-reversal symmetry of the interfer-
ometer. Thus, these diffraction phases are not easily
canceled. They depend on the duration, intensity, and
shape of the laser pulses, on the Bragg diffraction order,
as well as on the detuning from two-photon resonance and
thus on the atom’s velocity (but are nonzero even for zero
velocity). In simultaneous conjugate interferometers, they
also depend on the detuning 2ωm between the frequencies
used for the final two pulses.
The main building blocks of our interferometer are Bragg

diffraction and Bloch oscillations. During Bloch oscilla-
tions, a matter wave is loaded into an optical lattice created
by counterpropagating laser beams [27,28]. When the
optical lattice is accelerated by ramping the frequency
difference of the lasers, the atom’s velocity expectation
value will follow the acceleration of the lattice, in addition
to oscillating around its mean value with a period of
τB ¼ 8ωr= _ω. If the lattice is turned off when a momentum
of 2Nℏk has been transferred to the atom, where
N ¼ 1; 2; 3;…, the atom is found in a pure momentum
state.
In Bragg diffraction [4,5], an atom absorbs n photons of

momentum ℏk1 and is stimulated to emit n photons of
momentum ℏk2 into the opposite direction, receiving a total
impulse of 2nℏk, where k ¼ ðk1 þ k2Þ=2. The atom’s
internal state remains unchanged. In our experiment
[Fig. 1(a)], the first beam splitter transfers an impulse of
2nℏk with 50% probability, driven by two laser frequencies
ω1;2. After an interval T, a second beam splitter forms
two pairs of parallel-moving paths. The upward-moving
pair is accelerated further by 2Nℏk using Bloch oscilla-
tions; the downward-moving pair is accelerated down
simultaneously, by the same amount. This requires two
optical lattices accelerated in opposite directions. After the
acceleration, two more beam splitters close the two
interferometers.
Since no single Bragg diffraction or optical lattice can

be simultaneously resonant for the upper and lower
interferometer, we use three laser beams. To this end,
the beam at frequency ω1 is replaced by two, equally
strong, beams at ω�

1 , where

ωm≡ωþ
1 −ω−

1

2
; ω1≡ωþ

1 þω−
1

2
; ω12≡ω1−ω2: ð2Þ

Accounting for the two frequencies ω�
1 adds a phase term

−2ωmnT to Eq. (1) via the laser-atom interaction [2]. A
measurement of the recoil frequency can proceed by
changing the frequency ωm until Φ ¼ 0. This leads to

ωm

8ðnþ NÞ ¼
~Φ0

16nðnþ NÞT þ ωr ≡ Φ0

T
þ ωr; ð3Þ

where we call ~Φ0 the diffraction phase and Φ0 ¼
~Φ0=½16nðnþ NÞ� the reduced diffraction phase.
To study the Bragg beam splitters in detail, we consider

an atom in the light field of the three frequencies ω�
1 and

ω2, using the rotating wave approximation. Since all
frequencies are far detuned from any atomic transition,
we may adiabatically eliminate the excited state. We
expand the ground-state wave function gðz; tÞ in momen-
tum states gðz; tÞ ¼ P

m expð−4im2ωrtþ 2imkzÞgmðtÞ.
The Schrödinger equation reads

i_gm ¼ ΩR

2
2 cosðωmtÞðe−iω12tþ4ið2m−1Þωrtgm−1

þ eiω12t−4ið2mþ1Þωrtgmþ1Þ: ð4Þ
If we set 2 cosðωmtÞ to 1, we recover the equations for the
first two Bragg pulses, which are driven by ω1;ω2 only. For
the Rabi frequency, we assume a Gaussian time dependence
ΩR ¼ Ω̂Re−t

2=2τ2 . Numerically solving these equations
yields the matrix elements hmja; bjni, which give the
amplitudes for the Bragg pulse to transfer an atom from a
momentum state jnimoving at 2nℏk into a momentum state
jmi when driven with laser frequencies ω12 ¼ 8aωr and
ωm ¼ 8bωr. We also denote as hmjajni the corresponding
amplitude when there are only two Bragg frequencies.
The matrix elements have the symmetries hmja; bjni ¼
hnja; bjmi ¼ h−mj − a; bj − ni ¼ hnþ cjaþ c; bjmþ ci.
For states n;m that satisfy Bragg resonance, we have
furthermore argðhnjnjniÞ ¼ argðh0jnj0iÞ.
Labeling the momentum states as in Fig. 1, the prob-

abilities jψ1−4j2 for an atom to arrive in the four outputs
[counting from top to bottom in Fig. 1(a)] can be computed
from the evolved states, which read, for example,

ψ1 ¼ j2nþNi
× ðhp3jn;nþNjp2ihp2jn;nþNjp2ihp0jnjp0i2
þ ieiϕ1hp3jn;nþNjp3ihp3jn;nþNjp2ihp0jnjp1i2Þ;

ð5Þ

where ϕ1 is any phase difference between the two paths not
arising from diffraction phases, and we assume the atom
entered in a state jp0i.
In order to obtain the diffraction phase shift, we write

jψ1j ¼ jc1 þ eiϕ1þi ~ϕ0
1c2j, where c1;2 and ~ϕ0

1 are real
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constants. The latter is the diffraction phase measured by
detecting the population jψ1j2 at this interferometer output.
Similar diffraction phases ~ϕ0

2−4 are obtained from the other
three outputs. Experimentally, we use normalized detection
and measure ðjψ1j2 − jψ2j2Þ=ðjψ1j2 þ jψ2j2Þ. The diffrac-
tion phase thus measured is ð ~ϕ0

1 − ~ϕ0
2Þ=2 and the phase of

the interferometer pair is ~Φ0 ¼ ð ~ϕ0
1 − ~ϕ0

2 þ ~ϕ0
3 − ~ϕ0

4Þ=2.
While the physics of the Schrödinger equation (4) is

complex, a few observations can be made. Phase shifts
caused by the first beam splitter (Fig. 1) cancel exactly.
Also, forn ¼ 4; N ¼ 25, phase shifts aremost sensitive to the
parameters (e.g., intensity) of the second and third beam
splitter,while the influence of changes to the last beamsplitter
is suppressed by almost 3 orders of magnitude. It is currently
unknownwhether this holds generally for any values of n;N.
Finally, we note that the diffraction phase can be exactly
canceled in Mach-Zehnder interferometers: no diffraction
phase will be measured when detecting only the output state
moving with the momentum of the incoming atom.
Figure 1(b) shows how the calculated diffraction phase is

strongly decreased by introducing Bloch oscillations. This
suppression arises when introducing a large number of
Bloch oscillations, which leads to a large Doppler effect
between the interferometers at the time of the third and
fourth beam splitter. The light-atom interaction in each
interferometer becomes less influenced by the laser fre-
quency intended to address the other interferometer. This
suppression of the absolute diffraction phase is augmented
by a signal increase by a factor of 16nðnþ NÞ, which
further reduces the relative influence.
Figure 2 shows the reduced diffraction phase as a

function of the two-photon detuning δ of ω12 from
Bragg resonance, and therefore of atom velocity.
Thermal atoms have a velocity distribution that leads to
a distribution of the two-photon detuning through the
Doppler effect. To model this, we assume an initially flat
distribution from which atoms are selected by two Doppler-
sensitive Raman transitions driven by square-shaped π
pulses of duration ts. Table I lists the theoretical diffraction
phases ~Φ0. For n ¼ 5, e.g., we obtain a 17 mrad phase shift
at N ¼ 16 after integrating over the velocity distribution of
a 400 μs velocity selection pulse. This is an improvement
of about 13 times relative to the case of no Bloch
oscillations, even before the reduced diffraction phase
and thus the increased signal size are considered. A further
reduction and reduced sensitivity to the two-photon detun-
ing can be achieved by increasing the pulse duration [29].
Our experiment is performed in a 1-m high atomic

fountain of cesium atoms at 0.4 μK in the mF ¼ 0 state,
obtained by a moving-molasses launch and three-dimen-
sional Raman sideband cooling in a moving optical lattice.
Two vertical velocity cuts with a pulse duration ts of
400 μs are performed. Signals due to gravity and vibra-
tions are canceled by measuring the phase difference of the
two interferometers using ellipse fitting [6]. The laser

system driving the interferometer is similar to the one
described in Refs. [5,6,30].
Experimentally, we measure the diffraction phase by

running the interferometer with different pulse separation
times T, recording the respective values of ωm for which the
phase Φ of the interferometer is zero, and fitting to Eq. (3),
see Fig. 3(a). Figure 3(b) shows the reduced diffraction phase
thusmeasured as a function of the two-photon detuning from
Bragg resonance for n ¼ 5; N ¼ 0 andN ¼ 16. To compare
experiment with the theory, we used three fit parameters: the
peak Rabi frequency of the first pulse pair and the second
pulse pair, as well as the offset in the two-photon detuning.
The theory curves are averaged over the velocity distribution
of the atoms. The intensity per frequency component during
the final twoBragg pulses is fitted to be 2.5%higher than that
during the first two pulses. The observed reduced diffraction
phase is Φ0 ¼ 2π × 0.106ð2Þmrad. Introducing N ¼ 16
Bloch oscillations reduces this phase by about tenfold to
2π × 0.0093ð5Þ mrad.
An even stronger suppression can be achieved by active

feedback to the Bragg pulse intensity to null the diffraction
phase. For some diffraction orders, the Bragg pulse
duration can be chosen such that zero crossings of the
diffraction phase occur for laser pulse intensities close to

FIG. 2 (color online). Reduced diffraction phase shift in radians
calculated for a pair of interferometers as a function of the
detuning δ=ωr from the Bragg resonance. The solid lines indicate
the phase without Bloch oscillations, N ¼ 0, the dashed lines
with N ¼ 16. The nominal pulse duration is τ ¼ 0.2=ωr, with the
pulse peak intensity adjusted so as to provide 50% diffraction
efficiency. The Gaussian pulses are truncated at 1=40 of their
peak amplitude.

TABLE I. Diffraction phases fitted as ~Φ0 ¼ φ0 þ φ2ðδ − δ0Þ2.
The table lists φ0;2 as a function in milliradians for N ¼ 0; 16 and
n ¼ 1;…; 10. jδ0j < 10−8 for all cases. The phase ~Φ0 has to be
divided by 16nðnþ NÞ to obtain the reduced diffraction phase
Φ0. Throughout, τ ¼ 0.2.

N n ¼ 1 2 3 4 5 6 7 8 9 10

0 φ0 −149 −720 −100 132 210 289 400 588 754 840
φ2 −19.8 13.8 106 218 193 225 237 54.5 40 165

16 φ0 −192 −826 −220 −7.7 2.2 7.5 −3.9 16.3 24.8 −3.8
φ2 −29.1 9.0 111 223 209 239 269 127 125 249
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the ones that give 50% beam splitting, see Figs. 1(b) and 2.
Figure 3(a), solid symbols, shows operation at the zero
crossing for eight-photon Bragg diffraction, nulling the
reduced diffraction phase. We monitor the diffraction phase
continuously by alternating between a long and a short
pulse separation time T (80 and 5 ms, respectively) and
apply feedback by having the computer adjust the laser
pulse energy until this measured diffraction phase is zero,
using a proportional-integral servo implemented in soft-
ware. Figure 4 shows the operation of the interferometer
with this servo. The reduced diffraction phase is now
2π × 0.030ð73Þ μrad, i.e., compatible with zero at a level
about 1500 times below what we typically had before this
study [as exemplified by Fig. 3(b) with N ¼ 0].
Finally, we show that the above methods do not com-

promise the state-of-the-art sensitivity of the interferometer.
Figure 3(c) shows the contrast of n ¼ 5; N ¼ 16 interfer-
ometers as a function of pulse separation time T. We reach

45% contrast—90% of the theoretical optimum [5]—for
short T. This is significantly better than what we typically
achieved before (∼35%). The contrast remains nonzero even
atT ¼ 200 ms and the signal-to noise peaks at T ¼ 130 ms.
The free-evolution phase differences between the matter
waves at these T are respectively Φ≃ 4.4 Mrad and
Φ ¼ 2.8 Mrad, which are significant improvements relative
to previous atom interferometers of any kind that has a
nonzero free-evolution phase [1,2]. The data in Fig. 4
determine the recoil frequency with a resolution of
0.5 ppb and the fine-structure constant to a state-of-the-
art resolution of 0.25 ppb.
To summarize, we calculated and measured the diffrac-

tion phase shift and demonstrated its suppression by
introducing Bloch oscillations. Our Ramsey-Bordé inter-
ferometers combine signal enhancement by multiphoton
Bragg diffraction [5] and Bloch oscillations [1], and
suppress vibrations [6], the Coriolis force [31], as well
as the diffraction phase shift [7,8].
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FIG. 3 (color online). (a) Suppression of the beam splitter phase for n ¼ 4. The open symbols show the measured recoil frequency
fr ¼ ωr=2π without Bloch oscillations with Rabi frequencies Ω̂R ¼ 90 (diamonds) and 100 a.u. (triangles), where 100 a.u. results in a
50% beam splitter. Least-squares fits determine the diffraction phase as Φ0 ¼ 0.482ð21Þ mrad and Φ0 ¼ −0.403ð7Þ mrad, respectively;
shaded areas represent the 1 − σ fit error. Closed symbols are measured at Ω̂R ¼ 100 a:u: with N ¼ 16 Bloch oscillations, showing
suppression of Φ0 to 0.0012(8) mrad. (b) Reduced diffraction phase measured (symbols) and calculated (lines) as a function of the two-
photon detuning δ. (c) Contrast CðTÞ of the interferometer as a function of the pulse separation time T with n ¼ 5; N ¼ 16 along with a
linear fit. As a measure of the expected sensitivity, we also plot the product CT.

FIG. 4 (color online). Data covering 25.3 h taken with
T ¼ 80 ms, n ¼ 4, and N ¼ 25 using feedback to null diffraction
phases. Shown is the measured recoil frequency 8ðnþ NÞωr
relative to its average of approximately 2π × 479 kHz. The inset
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