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A method for calculating the Kohn-Sham exchange-correlation potential vXCðrÞ from a given
electronic wave function is devised and implemented. It requires on input one- and two-electron reduced
density matrices and involves construction of the generalized Fock matrix. The method is free from
numerical limitations and basis-set artifacts of conventional schemes for constructing vXCðrÞ in which
the potential is recovered from a given electron density, and is simpler than various many-body
techniques. The chief significance of this development is that it allows one to directly probe the
functional derivative of the true exchange-correlation energy functional and to rigorously test and
improve various density-functional approximations.
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The Kohn-Sham density-functional theory [1] is the most
widely used method for electronic structure calculations of
molecules and solids. In thismethod, theground-state energy
of a system is treated as a functional of the electron density
ρðrÞ and then partitioned in such a way that only one term,
the exchange-correlation energy EXC½ρ�, remains unknown.
Application of the variational principle to the total energy
functional leads to a one-electron Schrödinger equation with
an effective Hamiltonian that includes the system’s electro-
static potential and the exchange-correlation potential,
vXCð½ρ�; rÞ ¼ δEXC½ρ�=δρðrÞ. While the exact EXC½ρ� can
be written only in implicit form [2], its functional derivative
vXCð½ρ�; rÞ can in principle be computed and visualized as a
function of r for any particular noninteracting v-represent-
able density. High-quality Kohn-Sham potentials are used
for testing density-functional approximations [3], accurate
description of electronic excitations [4], and other purposes.
Most existing methods for generating exact exchange-

correlation potentials fit the function vXCðrÞ to a given
ground-state ρðrÞ via the Kohn-Sham equations either by
iterative updates [5–8] or through some constrained opti-
mization [9–11]. The target densities are usually obtained
from ab initio wave functions which are themselves dis-
carded. Because small changes in ρðrÞ can induce large
changes in vXCðrÞ [12], potential-reconstruction methods
that use only ρðrÞ as input suffer from numerical instabil-
ities. Moreover, electron densities generated using ubiqui-
tous Gaussian basis sets correspond to exchange-correlation
potentials that wildly oscillate and diverge [13–16], a result
that is formally correct but unwanted.Kohn-Shampotentials
can be also constructed by many-body methods [17–21],
but these techniques are quite elaborate and often require
solving an integral equation for vXCðrÞ, which is a challenge
by itself.

Here, we propose a radically different method for
computing the exchange-correlation potential of a given
many-electron system, which avoids the above difficulties.
In this method, the functional derivative of the exact EXC½ρ�
is obtained directly from the system’s electronic wave
function. The approach represents a nontrivial generaliza-
tion of our technique for constructing Kohn-Sham poten-
tials corresponding to Hartree-Fock (HF) electron densities
[22,23] and is conceptually related to the wave-function-
based analysis of Kohn-Sham potentials developed by
Baerends and co-workers [24–28].
The basic idea of our approach is to derive two

expressions for the local electron energy balance, one of
which originates from the Kohn-Sham equations, and the
other from the Schrödinger equation. When one expression
is subtracted from the other under the assumption that the
Kohn-Sham and wave-function-based densities are equal,
the system’s electrostatic potentials cancel out and the
difference gives an explicit formula for vXCðrÞ. For
simplicity, the treatment presented in this Letter is restricted
to electronic singlet ground states described with closed-
shell Kohn-Sham determinants, and assumes that all basis
functions and orbitals are real (although the notation for
complex conjugate is retained).
Accomplishing the first part of this plan is easy. In the

Kohn-Sham scheme, the ground-state density of a singlet
N-electron system is obtained as ρKSðrÞ ¼ P

inijϕiðrÞj2,
where ni ¼ 0 or 2 are occupation numbers of the corre-
sponding Kohn-Sham orbitals (N ¼ P

ini). The orbitals
are obtained by solving the equation

�
−
1

2
∇2þvðrÞþvKSH ðrÞþvXCðrÞ

�
ϕiðrÞ¼ ϵiϕiðrÞ; ð1Þ
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where vðrÞ is the electrostatic potential of the nuclei
and vKSH ðrÞ is the electrostatic potential of ρKSðrÞ. If we
multiply Eq. (1) by niϕ�

i ðrÞ, sum over i, and divide through
by ρKSðrÞ, we obtain

τKSL ðrÞ
ρKSðrÞ þ vðrÞ þ vKSH ðrÞ þ vXCðrÞ ¼ ϵ̄KSðrÞ; ð2Þ

where τKSL ðrÞ ¼ − 1
2

P
iniϕ

�
i ðrÞ∇2ϕiðrÞ is the Kohn-Sham

kinetic energy density and

ϵ̄KSðrÞ ¼ 1

ρKSðrÞ
X
i

niϵijϕiðrÞj2 ð3Þ

is the average local Kohn-Sham orbital energy [29].
The second part of the plan is to reduce the N-electron

Schrödinger equation to a local energy balance expression
analogous to Eq. (2). There is more than one way to do this.
Holas and March [30] had considered a contracted
Schrödinger equation for this purpose, but their proposal
led to a complicated integral equation for vXCðrÞ involving
the three-electron reduced density matrix (3-RDM). The
Baerends group [24–28] used an expression involving
ðN − 1Þ-electron conditional amplitudes. The method we
propose here is motivated by Löwdin’s approach [31] to the
problem of finding the optimal finite one-electron basis
set for a configuration-interaction (CI) expansion.
Suppose we have an N-electron ground-state wave

function Ψ expressed in terms of orthonormal orbitals
fψ ig. Then the total electronic energy may be written as

E ¼
X
ij

γijhψ jjĥjψ ii þ
X
ikjl

Γikjlhψ jψ ljr−112 jψ iψki; ð4Þ

where ĥðrÞ ¼ − 1
2
∇2 þ vðrÞ is the one-electron core

Hamiltonian, γij ¼
P

σhΨjâ†jσâiσjΨi (σ ¼ α; β is the spin
index) are matrix elements of the spin-free 1-RDM, and
Γikjl ¼ 1

2

P
σσ0 hΨjâ†jσâ†lσ0 âkσ0 âiσjΨi are matrix elements of

the spin-free 2-RDM.
Our objective is to turn Eq. (4) into a local energy

balance equation. We start by minimizing E with respect to
the functions fψ ig, subject to the constraint hψ jjψ ii ¼ δji,
while keeping γij and Γikjl fixed. The corresponding Euler-
Lagrange equation is

δE
δψ�

jðrÞ
¼

X
i

λijψ iðrÞ; ð5Þ

where λij are yet undetermined Lagrange multipliers. We
evaluate the functional derivative in Eq. (5), multiply the
result by ψ�

jðr0Þ, sum over j, and obtain

ĥðrÞγðr; r0Þ þ 2

Z
Γðr; r2; r0; r2Þ

jr − r2j
dr2 ¼

X
ij

λijψ iðrÞψ�
jðr0Þ;

ð6Þ
where

γðr; r0Þ ¼
X
ij

γijψ iðrÞψ�
jðr0Þ ð7Þ

and

Γðr; r2; r0; r20Þ ¼
X
ikjl

Γikjlψ iðrÞψkðr2Þψ�
jðr0Þψ�

l ðr20Þ ð8Þ

are the coordinate representations of the spin-free 1-RDM
and 2-RDM, respectively.
We denote the left-hand side of Eq. (6) by Gðr; r0Þ and

treat it as the kernel of an integral operator defined by

Ĝψ jðrÞ ¼
Z

Gðr; r0Þψ jðr0Þdr0: ð9Þ

Then λij can be determined from Eqs. (6) and (9) as

λij ¼ hψ ijĜjψ ji: ð10Þ
The operator Ĝ, known as the generalized Fock operator or
orbital Lagrangian, arises in various problems of quantum
chemistry [31–35].
For our purposes, we need only the r ¼ r0 part of

Eq. (6), which after division by ρWFðrÞ ¼ γðr; rÞ (the
density from the wave function) becomes

τWF
L ðrÞ
ρWFðrÞ þ vðrÞ þ 2

ρWFðrÞ
Z

Pðr; r2Þ
jr − r2j

dr2 ¼ ϵ̄WFðrÞ; ð11Þ

where τWF
L ðrÞ ¼ − 1

2
½∇2γðr; r0Þ�r0¼r is the interacting

kinetic energy density, Pðr; r2Þ ¼ Γðr; r2; r; r2Þ is the pair
function, and

ϵ̄WFðrÞ ¼ 1

ρWFðrÞ
X
ij

λijψ iðrÞψ�
jðrÞ: ð12Þ

One can always write the pair function as

Pðr; r2Þ ¼
1

2
ρWFðrÞ½ρWFðr2Þ þ ρWF

XC ðr; r2Þ�; ð13Þ

which defines ρWF
XC ðr; r2Þ, the exchange-correlation hole

density. Substituting Eq. (13) into Eq. (11) we obtain

τWF
L ðrÞ
ρWFðrÞ þ vðrÞ þ vWF

H ðrÞ þ vWF
S ðrÞ ¼ ϵ̄WFðrÞ; ð14Þ

where vWF
H ðrÞ is the electrostatic potential of ρWFðrÞ and

vWF
S ðrÞ ¼

Z
ρWF
XC ðr; r2Þ
jr − r2j

dr2 ð15Þ

is the Slater exchange-correlation-charge potential [36].
Equation (14) is the wave-function counterpart of Eq. (2).
Observe that the sum in Eq. (12) does not change if

we replace every λij with λ�ji. This means that ϵ̄WFðrÞ
is determined by the Hermitian (symmetric) part of Ĝ.
If desired, one can define the self-adjoint operator F̂ ¼
ðĜþ Ĝ†Þ=2 and solve the Hermitian eigenvalue problem
F̂fiðrÞ ¼ λifiðrÞ. This optional step allows one to cast
Eq. (12) as
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ϵ̄WFðrÞ ¼ 1

ρWFðrÞ
X
i

λijfiðrÞj2; ð16Þ

which is formally analogous to Eq. (3). The quantity ϵ̄WFðrÞ
as given by Eq. (16) was introduced by us earlier under the
name of “average local electron energy” [37].
Now let us subtract Eq. (14) from Eq. (2), substitute the

identity τL ¼ τ −∇2ρ=4 for τKSL and for τWF
L with τKS ¼

1
2

P
inij∇ϕij2 and τWFðrÞ ¼ 1

2
½∇r0∇rγðr; r0Þ�r0¼r, and apply

the condition ρKSðrÞ ¼ ρWFðrÞ. This yields the central
equation of this work:

vXCðrÞ ¼ vWF
S ðrÞ þ ϵ̄KSðrÞ − ϵ̄WFðrÞ þ τWFðrÞ

ρWFðrÞ −
τKSðrÞ
ρKSðrÞ :

ð17Þ
Since τKS and ϵ̄KS are initially unknown, Eq. (17) must
be solved iteratively in conjunction with the Kohn-Sham
equations. The transition from τL to τ is not strictly
necessary but beneficial for numerical calculations because
τ does not diverge at the nuclei as does τL.
Note that as r → ∞, the term vWF

S vanishes, but the other
ingredients remain nonzero: ϵ̄KS, τKSL =ρKS, and −τKS=ρKS
approach ϵHOMO [38], while ϵ̄WF, τWF

L =ρWF, and −τWF=ρWF

approach −Imin [37], where Imin is the first ionization
energy of the system as determined by the extended
Koopmans theorem [39]. To ensure that vXCðrÞ as given
by Eq. (17) properly vanishes at infinity, we shift all current
values of ϵi in each Kohn-Sham iteration to satisfy the
condition

ϵHOMO ¼ −Imin; ð18Þ

which also imparts ρKSðrÞ with proper asymptotic decay.
The proposed algorithm is as follows. (1) Obtain a wave

function for the system of interest. Calculate ρWF, τWF, vWF
S ,

ϵ̄WF, and Imin. (2) Generate an initial guess for the occupied
Kohn-Sham orbitals fϕig and their eigenvalues fϵig.
(3) Using the current guess for fϕig and shifted fϵig,
construct the potential vXC by Eq. (17). (4) Solve the Kohn-
Sham equations using the current vXC and the same basis as
in step 1. This gives new sets fϕig and fϵig. (5) Return to
step 3 and iterate until the potential vXC is self-consistent.
The method was implemented in the GAUSSIAN09 suite

of programs [40], which already contains subroutines for
constructing the generalized Fock matrix as a part of the
multiconfigurational self-consistent-field (MCSCF) mod-
ule. The values of Imin were computed as in Ref. [34], while
ρWF and τWF were assembled from natural orbitals. Any
reasonable density-functional approximation may be used
to generate an initial guess for fϕig and fϵig. The potential
was considered converged when all Kohn-Sham density
matrix elements from consecutive iterations differed by
less than 10−10 in the root-mean-square sense. The method
works best with basis sets that are not heavily contracted
in the core region.

An added benefit of generating vXCðrÞ from a wave
function is that one can readily obtain the corresponding
exchange-correlation energyEKS

XC,which is inaccessiblewhen
only the electron density is known.We computed this energy
as EKS

XC¼EWF
XCþTc, where EWF

XC is the ab initio exchange-
correlation energy defined as EWF

XC ¼ 1
2

R
ρWFðrÞvWF

S ðrÞdr
and Tc ¼ T − Ts is the difference between the ab initio
and Kohn-Sham total kinetic energies, evaluated ana-
lytically. Also of interest is the integrated density
difference Δρ¼R jρKSðrÞ−ρWFðrÞjdr, evaluated for the
self-consistent vXCðrÞ. Because the condition ρKSðrÞ ¼
ρWFðrÞ is imposed in our approach only in the derivation
of Eq. (17), Δρ strictly vanishes only in the basis-set
limit. Insistence on reproducing ρWFðrÞ exactly in
Gaussian basis sets would be misplaced because (i) it
brings out unwanted oscillations and divergences of
vXCðrÞ and (ii) the potential that yields a given density
in a finite basis is not unique anyway [41,42].
To test the method, we computed exchange-correlation

potentials for the three atoms (He, Be, and Ne) for which
exact potentials are available in the literature [43,44]
using full CI (FCI) and complete active space (CAS)
self-consistent-field (SCF) wave functions and standard
Gaussian basis sets [45]. For He, already the potential
extracted from the FCI wave function in the cc-pVTZ
basis set is very close to the exact vXCðrÞ, and the cc-pVQZ
and cc-pV5Z FCI exchange-correlation potentials are
visually indistinguishable from the benchmark (Fig. 1
and Table I). Even the correlation potential for He,
vCðrÞ ¼ vXCðrÞ − vHðrÞ=2, which is almost 2 orders of
magnitude smaller than vXCðrÞ, is very accurate at the FCI
cc-pV5Z level (Fig. 1). For Be, the sequence of potentials
fromCAS(2,4)wave functions quickly approaches the exact
vXCðrÞ with increasing basis set size (Fig. 2), as do the
corresponding Ts values (Table I). By contrast, Tc and EKS

XC
converge slowly because they depend not only onvXCðrÞ but
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FIG. 1 (color online). Exchange-correlation and correlation
(inset) potentials for the He atom calculated from FCI wave
functions using various basis sets.
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also on the accuracy of the wave function through the value
of T. Potentials for the Ne atom constructed from CAS(8,8)
wave functions also improve rapidly with the size of the
basis set (Fig. 2). Thus, even compact correlated wave
functions can produce accurate Kohn-Sham potentials,
provided that the basis set is of good quality.
The method works equally well for molecules. It is

known that, in molecules, the onset of strong correlation
induced by bond stretching manifests itself in characteristic
midbond peaks of vXCðrÞ [27,46–48]. Using our method,
we readily reproduced these peaks in a number of stretched
diatomics exemplified by N2 (Fig. 3). Exchange-correlation
potentials for polyatomic molecules can also be generated
by our method (Fig. 4).
It is remarkable that Kohn-Sham potentials computed

from wave functions are always well defined and free from
spurious features. Conventional methods for extracting
vXCðrÞ from densities, when implemented in matrix form,
would not deliver such unambiguous results because there
is no one-to-one correspondence between densities and
potentials in finite basis sets [41]. Furthermore, when

density-to-potential mapping techniques are rigorously
applied to electron densities generated in Gaussian basis
sets, one obtains unphysical potentials [13–16]. Neither of
these complications affects our approach.
In conclusion, we have developed a practical method

for folding a many-electron wave function into the
corresponding exchange-correlation potential. The key
ingredient of our approach is the generalized Fock matrix
which is commonly available in ab initio codes as a
byproduct of computing MCSCF wave functions, nuclear
gradients, and first-order properties. The method pos-
sesses several advantages over existing techniques for
constructing exchange-correlation potentials: it delivers
vXCðrÞ in a simple analytic form, avoids the ambiguity of
associating a given electron density with a Kohn-Sham
potential in a finite basis set, is stable with respect to
changes in basis sets, convergence thresholds, and other
details of the calculation, and produces potentials without
oscillations and divergences when using Gaussian basis
sets. Further exploration of the capabilities of our
approach is under way.

TABLE I. Characteristics of selected wave functions and the corresponding Kohn-Sham effective potentials (in atomic units).

System Wave function Etot Imin Ts Tc ¼ T − Ts EKS
XC Δρ

He FCI/cc-pVTZ −2.900 232 0.9013 2.8571 0.0435 −1.0550 0.002 51
FCI/cc-pVQZ −2.902 411 0.9026 2.8652 0.0370 −1.0645 0.000 65
FCI/cc-pV5Z −2.903 152 0.9032 2.8668 0.0364 −1.0662 0.000 13
Exacta −2.903 724 0.9037 2.8671 0.0366 −1.0667

Be CAS(2,4)/cc-pCVDZ −14.615 45 0.3485 14.4901 0.1333 −2.6146 0.017 29
CAS(2,4)/cc-pCVTZ −14.616 53 0.3489 14.5538 0.0619 −2.6866 0.004 93
CAS(2,4)/cc-pCVQZ −14.616 77 0.3490 14.5910 0.0258 −2.7232 0.005 47
FCI/u-cc-pCVTZ −14.663 70 0.3421 14.5956 0.0654 −2.7715 0.002 15
Exacta −14.667 36 0.3426 14.5942 0.0732 −2.7701

aAccurate estimates from Ref. [43] (He) and Ref. [44] (Be).
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FIG. 2 (color online). Exchange-correlation potentials for the
Ne and Be atoms calculated from compact CASSCF wave
functions using various basis sets.
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FIG. 3 (color online). Exchange-correlation potentials for the
N2 molecule obtained from HF and valence CASSCF wave
functions at the experimental equilibrium bond length and at 2Re.
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