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We consider spherically symmetric Einstein-massless-scalar field equations with a negative cosmo-
logical constant in five dimensions and analyze the evolution of small perturbations of anti–de Sitter (AdS)
spacetime using the recently proposed resonant approximation. We show that for typical initial data the
solution of the resonant system develops an oscillatory singularity in finite time. This result hints at a
possible route to establishing the instability of AdS under arbitrarily small perturbations.
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Introduction.—A few years ago two of us gave numeri-
cal evidence that anti–de Sitter (AdS) spacetime in four
dimensions is unstable against black-hole formation for a
large class of arbitrarily small perturbations [1]. More
precisely, we showed that for a perturbation with amplitude
ε a black hole forms on the time scale Oðε−2Þ. Using
nonlinear perturbation analysis we conjectured that the
instability is due to the turbulent cascade of energy from
low to high frequencies. This conjecture was extended to
higher dimensions in [2].
Because the computational cost of numerical simulations

rapidly increases with decreasing ε, our conjecture was
based on extrapolation of the observed scaling behavior of
solutions for small (but not excessively so) amplitudes,
which left some room for doubt on whether the instability
would persist to arbitrarily small values of ε (see, e.g., [3]).
To resolve these doubts, in this Letter we validate and
reinforce the above extrapolation with the help of a recently
proposed resonant approximation [4–6]. The key feature of
this approximation is that the underlying infinite dynamical
system (hereafter referred to as the resonant system) is scale
invariant: if its solution with amplitude 1 does something
at time t, then the corresponding solution with amplitude ε
does the same thing at time t=ε2. Moreover, the latter
solution remains close to the true solution (starting with the
same initial data) for times ≲ε−2 (provided that the errors
due to omission of higher-order terms do not pile up too
rapidly). Thus, by solving the resonant system we can
probe the regime of arbitrarily small perturbations (whose
outcome of evolution is beyond the possibility of numerical
verification).
For concreteness, in this Letter we focus our attention on

AdS5 (the most interesting case from the viewpoint of
AdS=CFT correspondence); an extension to other dimen-
sions is straightforward and will be presented elsewhere.
Model.—For the reader’s convenience, let us recall from

[1,2] the general framework for studying the spherically
symmetric scalar perturbations of the AdS spacetime.
The five-dimensional asymptotically AdS spacetimes are

parametrized by the coordinates ðt; x;ωÞ ∈ ð−∞;∞Þ ×
½0; π=2Þ × S3 and the metric

ds2 ¼ l2

cos2x
ð−Ae−2δdt2 þ A−1dx2 þ sin2xdω2Þ; ð1Þ

where l2 ¼ −6=Λ, dω2 is the round metric on S3 and A, δ
are functions of ðt; xÞ. For this ansatz the evolution of a self-
gravitating massless scalar field ϕðt; xÞ is governed by the
following system (using units in which 8πG ¼ 3):

∂tΦ ¼ ∂xðAe−δΠÞ; ∂tΠ ¼ 1

tan3x
∂xðtan3xA e−δΦÞ; ð2Þ

∂xA ¼ 2þ 2sin2x
sin x cos x

ð1 − AÞ − sin x cos xAðΦ2 þ Π2Þ; ð3Þ

∂xδ ¼ − sin x cos x ðΦ2 þ Π2Þ; ð4Þ

where Φ ¼ ∂xϕ and Π ¼ A−1eδ∂tϕ. To ensure smoothness
at spatial infinity and finiteness of the total mass M we
impose the boundary conditions (using ρ ¼ π=2 − x)

ϕðt; xÞ ¼ f∞ðtÞρ4 þOðρ6Þ; δðt; xÞ ¼ δ∞ðtÞ þOðρ8Þ;
Aðt; xÞ ¼ 1 −Mρ4 þOðρ6Þ; ð5Þ

where the power series expansions are uniquely determined
by M and the functions f∞ðtÞ, δ∞ðtÞ. We use the normali-
zation δðt; 0Þ ¼ 0; hence, t is the proper time at the center.
We will solve this system for small smooth perturbations of
the AdS solution ϕ ¼ 0, A ¼ 1, δ ¼ 0.
Resonant approximation.—As follows from Eq. (2),

linearized perturbations of AdS5 are governed by the
operator L ¼ − tan−3 x∂xðtan3 x∂xÞ. This operator is
essentially self-adjoint with respect to the inner product
ðf; gÞ ≔ R π=2

0 fðxÞgðxÞtan3xdx. The eigenvalues and
orthonormal eigenfunctions of L are ω2

n ¼ ð2nþ 4Þ2
(n ¼ 0; 1;…) and
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enðxÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 2Þðnþ 3Þ

nþ 1

r
cos4xPð1;2Þ

n ( cosð2xÞ); ð6Þ

where Pð1;2Þ
n ðxÞ is the Jacobi polynomial of order n.

After these preliminaries we are prepared to introduce
the resonant approximation. To avoid technicalities, let us
first illustrate this approach in the case of the cubic wave
equation on the fixed AdS5 background [7],

∂ttϕþ Lϕþ sec2xϕ3 ¼ 0: ð7Þ

Inserting the mode expansion ϕðt; xÞ ¼ P
ncnðtÞenðxÞ into

(7), we get an infinite system of coupled oscillators

d2cn
dt2

þ ω2
ncn ¼

X
jkl

Ijklncjckcl; ð8Þ

where the coefficients Ijkln ¼ −ðejekelsec2x; enÞ deter-
mine interactions between the modes. To factor out fast
linear oscillations in (8), we change variables using the
variation of constants (also known as the “interaction
picture”)

cn ¼ βneiωnt þ β̄ne−iωnt; ð9Þ

dcn
dt

¼ iωnðβneiωnt − β̄ne−iωntÞ: ð10Þ

This transforms the system (8) into

2iωn
dβn
dt

¼
X
jkl

Ijklncjckcle−iωnt; ð11Þ

where each cj in the sum is given by (9); thus, each term in
the sum has a factor e−iΩt, where Ω ¼ ωn � ωj � ωk � ωl.
The terms with Ω ¼ 0 correspond to resonant interactions,
while those with Ω ≠ 0 are nonresonant.
Passing to slow time τ ¼ ε2t and rescaling

βnðtÞ ¼ εαnðτÞ, we see that for ε going to zero the
nonresonant terms ∝ e−iΩτ=ε

2

are highly oscillatory and
therefore negligible (at least for some time). Keeping only
the resonant terms in (11), which is equivalent to time-
averaging, we obtain the infinite autonomous dynamical
system (which we shall call the resonant system)

2iωn
dαn
dτ

¼
X
jkl

Ijklnαjαkᾱl; ð12Þ

where the summation runs over the set of indices fj; k; lg for
which Ω ¼ 0 and Ijkln ≠ 0 (because of the fully resonant
nondispersive spectrum of L and the vanishing of some
coefficients Ijkln, this set reduces to fjkljjþk−l¼ng; see
footnote 3 in [6]).Note that the system (12) is invariant under
the scaling αnðτÞ → ε−1αnðτ=ε2Þ. It is routine to show that

the solutions of (11), starting from small initial data of size ε,
are well approximated by the solutions of (12) on the time
scale Oðε−2Þ [10]. In other words, on this time scale the
dynamics of solutions of the cubic wave equation (7) is
dominated by resonant interactions.
For the system (2)–(4), the derivation of the resonant

system is similar but technically more intricate because, to
begin with, one has to integrate the constraints which (at the
lowest order) results in nonlocal cubic nonlinearities in the
derivatives of ϕ. Despite these complications, the resonant
system has the same form as (12), namely

2iωn
dαn
dτ

¼
X

jþk−l¼n

Cjklnαjαkᾱl; ð13Þ

except that now the interaction coefficients Cjkln are given
by much more complicated expressions involving integrals
of products of eigenfunctions (6) and their derivatives.
The system (13) was first derived in [4] and [5] using the
multiscale perturbation methods [11] and soon afterwards
in [6] using the averaging method. It is simpler than the full
system, yet still too difficult to be handled by purely
analytic means; hence, in what follows we analyze it using
numerical and asymptotic methods.
Results.—We solved in parallel the full Einstein

equations (2)–(4) and the resonant system (13) for a variety
of the same small initial data. To illustrate the results
(which we believe are universal), we present them for the
two-mode initial data with energy (almost) equally distrib-
uted between the modes

ϕð0; xÞ ¼ ϵ

�
1

4
e0ðxÞ þ

1

6
e1ðxÞ

�
; Πð0; xÞ ¼ 0: ð14Þ

Let us point out that, since small one-mode data and their
perturbations enjoy quasiperiodic evolutions [1,4,12], the
two-mode data are in a sense minimal in what it takes to
trigger the turbulent cascade (cf. [13]).
The numerical simulations of the full Einstein

equations (2)–(4) were previously reported in [2] in the
case of Gaussian initial data. The evolution of the two-
mode data (14) looks similar. For all considered small
values of ε, we observe formation of an apparent horizon
(which is signaled by Aðt; rÞ dropping below a certain small
threshold, say 2−16) in time tHðεÞ ∼ ε−2 (see Fig. 1). This
scaling suggests that the instability should be seen in the
resonant approximation. In what follows, we confirm this
expectation and, thereby, give support to the conjecture that
the instability is present for arbitrarily small perturbations.
For the numerical computation, the resonant system (13)

must be truncated at some (possibly large) index N. As a
compromise between the accuracy [14] and the computa-
tional cost, we choose hereN ¼ 172. To solve the truncated
resonant system (TRS) numerically we use the sixth-order
Gauss-Runge-Kutta method [16]. The initial data for the
TRS corresponding to (14) are
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α0ð0Þ¼ 1=8; α1ð0Þ¼ 1=12; ½αnð0Þ�n≥2 ¼ 0: ð15Þ

To describe and analyze the behavior of solutions, it is
convenient to use the amplitude-phase representation
αn ¼ AneiBn , in terms of which the resonant system (13)
takes the following form [6]:

2ωn
dAn

dτ
¼

X
jþk−l¼n
j≠n;k≠n

SjklnAjAkAl sinðBnþBl −Bj−BkÞ; ð16Þ

2ωn
dBn

dτ
¼ TnA2

n þ
X
j≠n

RjnA2
j

þ A−1
n

X
jþk−l¼n
j≠n;k≠n

SjklnAjAkAl cosðBn þBl −Bj −BkÞ;

ð17Þ
where Tn ¼ Cnnnn, Rjn ¼ Cnjjn if j ≠ n, and Sjkln ¼ Cjkln

if all four indices are different. Explicit expressions for
these coefficients are given in Appendix A in [6].
Evolving the initial data (15), we find that higher modes

are quickly excited (see Fig. 2). For early times, the
amplitudes grow at the polynomial rate AnðτÞ ∼ τn−1 while
the phases evolve approximately linearly. At later times, the
frequencies of oscillations begin to grow rapidly (see
Fig. 3). This highly oscillatory behavior accumulates at
a finite time, causing numerical difficulties. We find that the
time step of numerical integration, for which the algorithm
is convergent, tends to zero as the cutoff N increases. This
suggests that the solution of the resonant system (N ¼ ∞)
develops an oscillatory singularity in some finite time
τ� [17].
To give better evidence for the blowup and analyze its

character, we proceed in the spirit of the analyticity strip

method [18,19]; namely, we make the following asymptotic
ansatz for the amplitudes:

AnðτÞ ∼ n−γðτÞe−ρðτÞn for n ≫ 1: ð18Þ

Fitting this formula to the numerical data, we obtain the
time dependence of the exponent γðτÞ and the “analyticity
radius” ρðτÞ. As shown in Fig. 4, it appears that ρðτÞ tends
to zero in a finite time τ� (with ρ0 ¼ −ρ0ðτ�Þ > 0),
confirming that the solution of the resonant system (13)
becomes singular at τ�. The fit also reveals that the
asymptotic power-law amplitude spectrum has the expo-
nent limτ→τ�γðτÞ ¼ 2.
Guided by these numerical findings we will now con-

struct an asymptotic solution of the resonant system that
becomes singular in finite time. We assume that for large n
and τ → τ�

AnðτÞ ∼ n−2e−ρ0ðτ�−τÞn: ð19Þ

To solve for the phases, we note the following asymptotic
behavior of the interaction coefficients:

FIG. 2 (color online). The amplitude spectra (for several
times τ).

FIG. 3 (color online). Evolution of a sample high mode.

FIG. 1 (color online). Time of horizon formation vs amplitude
in the evolution of initial data (14). The solid line depicts the fit of
the function −2 ln εþ aþ bε2 to the numerical data ln tHðεÞ.
From this fit we obtain τH ≔ limε→0ε

−2tHðεÞ ¼ ea ≈ 0.514.
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Tn ∼ n5; Rjn ∼ n2j3; Sλj;λk;λl;λn ∼ λ4Sjkln: ð20Þ

Notice that the latter implies that
X

jþk−l¼n
j≠n;k≠n

SjklnðjklÞ−2 ¼ Oð1Þ; ð21Þ

that is, the sum does not depend on n. Plugging (19) into
Eq. (17) and using (20) and (21), we see that for τ → τ� the
rhs of Eq. (17) is dominated by the term

X
RjnA2

j ∼ n2
X

j−1e−2ρ0ðτ�−τÞj ∼ n2 lnðτ� − τÞ; ð22Þ

thus, the derivatives dBn=dτ blow up logarithmically.
Moreover, it follows from the above that for large n the

phasesBn behave linearlywithn, henceBnþBl−Bj−Bk≈0
for the resonant quartets. This implies that both sides of
Eq. (16) are (approximately) independent of n, reassuring
us that the ansatz (19) is self-consistent. Numerical sim-
ulations indicate that the asymptotics of the blowup just
described is in fact universal; this is illustrated in Fig. 5 in
the case of two-mode data (15).
Conclusion.—To summarize, we have constructed the

asymptotic solution of the resonant system that becomes
singular in finite time, and we have given numerical
evidence that this solution acts as a universal attractor
for blowup. The key question is how to transfer this blowup
result from the resonant system to the full system. On one
hand, we see that the resonant approximation reproduces
the amplitudes of true solutions remarkably well almost all
the way to collapse. This is illustrated in Figs. 6 and 7,
where we compare the energy spectrum and the growth of

FIG. 5 (color online). Evidence for the logarithmic blowup.
The solid line represents the fit of the theoretical prediction
an lnðτ� − τÞ þ bn to the numerical data dBn=dτ for n ¼ 96.
Performing this fit for all n > 20 we find, in accordance with the
asymptotic analysis, that the coefficients an and bn vary linearly
with n, while τ� ≈ 0.509 does not depend on n. Note that τ�
agrees very well with the time of collapse τH given in the caption
of Fig. 1.

FIG. 4 (color online). The radius of analyticity ρðτÞ obtained by
fitting the formula (18) to the amplitude spectrum. The point of
this (notoriously poor) fit is to show that ρðτÞ hits zero in some
finite time τ�, not to determine τ� precisely (cf. [17]).

FIG. 6 (color online). Energy spectra for the full system (dotted
lines) and TRS (solid lines) at sample late times (cf. Fig. 2). The
power-law spectrum n−2 unfolds as the solutions collapse or blow
up. Here ε ≈ 0.0079 (the smallest amplitude used in simulations).

FIG. 7 (color online). Upper envelope of Π2ðt; 0Þ in the
evolution of initial data (14) with ε ¼ ð2πÞ−3=22−p for p ¼
1; 2; 3 (dotted lines). As ε decreases, the rescaled quantities
ε−2Π2ðε2t; 0Þ approach a limiting curve. The corresponding
solutions of TRS (solid lines) appear to approach the same curve
as N increases.
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the Ricci scalar at the origin computed in parallel using the
full Einstein equations and the resonant system. On the
other hand, the resonant approximation does not work as
well for the phases [20]. For this reason (and because of the
possible breakdown of the cubic approximation near
collapse), it is not clear to us what (if any) is the physical
interpretation of the oscillatory singularity for the resonant
system [21]. Nonetheless, the fact that solutions of the
resonant system blow up in finite time (for typical initial
data) strongly indicates that the corresponding solutions of
the full system collapse on the time scale Oðε−2Þ.
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