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Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the
existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set
consisting primarily of νe and ντ charged-current and neutral-current (cascade) neutrino interactions. In the
analysis presented here, a data sample of approximately 35 000 muon neutrinos from the Northern sky is
extracted from data taken during 659.5 days of live time recorded between May 2010 and May 2012. While
this sample is composed primarily of neutrinos produced by cosmic ray interactions in Earth’s atmosphere,
the highest energy events are inconsistent with a hypothesis of solely terrestrial origin at 3.7σ
significance. These neutrinos can, however, be explained by an astrophysical flux per neutrino flavor
at a level of ΦðEνÞ ¼ 9.9þ3.9

−3.4 × 10−19 GeV−1 cm−2 sr−1 s−1ðEν=100 TeVÞ−2, consistent with IceCube’s
Southern-Hemisphere-dominated result. Additionally, a fit for an astrophysical flux with an arbitrary
spectral index is performed. We find a spectral index of 2.2þ0.2

−0.2 , which is also in good agreement with the
Southern Hemisphere result.
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The nature of the objects and the mechanisms which
accelerate cosmic rays pose major open questions in current
astrophysics, which may, in part, be answered by obser-
vations of high energy neutrinos. At high energies, the
majority of cosmic rays are protons or atomic nuclei, and
their interaction with other matter or radiation is known to
produce neutrinos [1]. If this happens near the sourcfe of
the cosmic rays, the neutrinos, which—unlike the charged
cosmic rays—can travel undeflected through the magnetic
fields of deep space, can point back to these sources.
IceCube is a detector constructed at depths between 1.5

and 2.5 km in glacial ice at the South Pole, instrumenting
about a cubic kilometer of volume with optical sensors [2].
This forms a Cherenkov detector for the light produced
when neutrinos interact and generate secondary charged
particles. These interactions give rise to two characteristic
event topologies: linear “tracks” produced by long-range
muons emitting light as they travel and near-spherical
“cascades” from the more pointlike light emission of
electromagnetic and hadronic particle showers which
terminate in ice after small distances compared to the
instrumentation density of the detector [3].
One effective method for identifying neutrino inter-

actions is to look for events which show no sign of light
emission when entering the detector boundary. These are
referred to as “starting” events. A recent IceCube study
using this technique [4] has determined that astrophysical
neutrinos at high energies do exist and that their flux is
broadly compatible with existing models [5–7]. While such
starting events provide good evidence for an astrophysical
neutrino flux, they do not sample all components of the
expected flux equally well. Because of absorption in Earth,
few neutrinos are observed from the Northern sky, and few
of the observed events are identifiably νμ. This analysis
seeks to observe more of these particular types of events
by relaxing the requirement that events begin inside the
detector to permit the use of the long muon range to achieve
a larger effective volume. Events are then selected based on
the event topology of muons produced from νμ interactions
to reduce background contamination. In this analysis, as
in other IceCube analyses, it is not possible to distinguish
neutrinos from antineutrinos, so only the combined flux can
be measured.
To identify astrophysical muon neutrinos, we must

distinguish them both from other types of events in the
detector and from other sources of neutrinos. The majority
of the data recorded by IceCube are produced by muons
originating in cosmic ray air showers that penetrate the ice
and reach the detector. Since this analysis seeks to take
advantage of the long muon tracks and cannot depend on
observing the neutrino interaction vertex inside the detec-
tor, only muons with directions that imply they passed
through more material than the maximal expected muon
range are selected. In this case, part of the distance must
have been traversed by a neutrino, which is less prone to

interaction. This analysis accepts, therefore, only events
whose reconstructed zenith angles are greater than 85°,
corresponding to an overburden equivalent to at least 12 km
of water. The directions of muon events are reconstructed
by fitting the hypothesis of a particle moving at the speed of
light and emitting Cherenkov radiation to the timing of the
observed photons. The fit accounts for the expected delay
of the first photon to reach each detector module due to
scattering [8]. Rejecting poorly fit events removes both low
energy atmospheric muons with poor direction resolution
and the less numerous cascadelike events produced by
neutrino interactions other than charged-current νμ. In
addition to the direction of the muon, the other observable
of interest is muon energy. A proxy for the energy is
computed by fitting the amount of light expected to be
emitted by a template muon to the number of observed
photons in each event [9,10]. The precision of the energy
proxy is limited by the relatively short section of the
muon’s total track which is observed and is only loosely
connected to the energy of the interacting neutrino since
an unknown amount of energy is generally lost before the
muon reaches the detector. After applying event-quality
criteria (which are qualitatively equivalent to those used
in earlier studies [11,12], with details being given in the
Supplemental Material [13] and in Ref. [14]) this yields
a highly pure (99.9%) sample of neutrino-induced muon
events, with an efficiency of about 24% for neutrino-
induced events from an E−2 spectrum. This selection still
suffers from neutrino absorption in Earth, resulting in a
loss of events at the highest zenith angles and energies.
This analysis was performed with a blindness criterion
such that only 10% of the experimental data were used in
its development, in conjunction with simulated data, to
determine the data selection. The full data were used only
after the analysis technique had been fixed.
Since the astrophysical neutrinos we seek to observe in

this study are expected to be produced in conjunction with
the cosmic rays [15,16], they should have a related power-
law spectrum of the form Φ ∝ E−γ , where γ should be ∼2.
For this analysis, we take γ ¼ 2 as a benchmark model [17].
We also make the further simplifying assumption that the
astrophysical flux is isotropic, as would be the case for a
signal originating from many distant individually weak
sources.
Although astrophysical neutrinos are the target of the

analysis, the numerous neutrinos produced by cosmic ray
air showers must be accounted for. Atmospheric neutrinos
are usually separated into two groups: those produced by
the decays of pions and kaons, referred to as “conventional”
and those produced by the decays of heavier mesons,
particularly those containing charm quarks, referred to as
“prompt.” Since the conventional atmospheric neutrinos
arise from relatively well-understood particle physics and
have been measured by a variety of experiments [18,19],
there exist several models for this flux [20–22]. Here we
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use the HKKMS07 calculation [20], where the uncertainty
of this calculation is estimated by its authors to be less
than 10% at few GeV energies, which is consistent with
measurements [23] and is expected to increase with energy
to around 25% at 1 TeV. Since this model was designed
for relatively low energies (100 MeV–10 TeV) compared to
those considered in this analysis (∼100 GeV–100 TeV), it
is extended and modified according to the procedure in
Ref. [12] to take into account the input cosmic ray spectrum
[24] at high energies. An important feature of the conven-
tional atmospheric neutrino flux is that the parent mesons
may be destroyed by interactions with the medium before
decaying and producing neutrinos. The energy spectrum is,
therefore, steeper (∝ E−3.7) than that of the cosmic rays from
which it is produced (∝ E−2.7) [25]. This is then markedly
softer than the hypothesized spectrum of astrophysical
neutrinos. The cosmic ray showering process gives these
neutrinos a characteristic distribution in direction, peaked
near the observer’s horizon, because of the different profiles
of atmospheric density the air showers encounter.
The prompt atmospheric neutrinos are less well under-

stood, as they have not yet been observed experimentally,
and the theoretical predictions depend on understanding
heavy quark production in cosmic ray-air collisions at high
energies. Multiple calculations exist [26–28], and here
we choose the phenomenological ERS estimate [28] of
the flux, again applying corrections for the input cosmic ray
spectrum. This model has a normalization uncertainty of
about a factor of 2, and other calculations predict sub-
stantially larger or smaller fluxes. Like the conventional
atmospheric neutrinos, the energy spectrum of the prompt
component arises from the spectrum of the cosmic rays.
However, since the intermediate mesons involved decay so
rapidly (with a mean lifetime of 1.04 × 10−12 s for the D�
at rest, as opposed to 2.60 × 10−8 s for the π� or 1.24 ×
10−8 s for the K�), losses via interactions are suppressed,
and the spectrum remains similar to E−2.7 and, likewise,
remains essentially isotropic.

To fit the observed data, we implement the binned
Poisson profile likelihood construction described in
Ref. [11]. Here, the expected event rates for each flux
component are computed by weighting a generalized
simulation of neutrinos traversing Earth and interacting
at IceCube according to the model’s input neutrino flux.
Comparisons are made in each bin to the observed data.
For this study, the data are binned in both the recon-
structed zenith angle and the energy proxy. The main
parameter of interest for this fit is the normalization
assigned to the astrophysical flux component, while the
normalizations of the background components are treated
as nuisance parameters. Additional nuisance parameters
include the difference between the true slope of the cosmic
ray spectrum and the assumed model, the efficiency with
which the IceCube hardware detects photons emitted in
the ice and the relative contributions to the conventional
atmospheric neutrino flux from kaon decays rather than
pion decays. The nuisance parameters can be constrained
using prior information from external sources, and the
priors used in this analysis are listed in the fourth column
of Table I.
The parameter values from fitting 659.5 days of detector

live time using the benchmark set of fluxes are summarized
in Table I, and the projections of the observed and fitted
spectra into the reconstructed zenith angle and muon
energy proxy are shown in Figs. 1 and 2, respectively
[29]. The uncertainties shown for the fit parameters include
both statistical and systematic contributions (at the 68% con-
fidence level), via the profile likelihood, using the χ2

approximation [30]. Note that the data point in Fig. 2 at
muon energy proxy values of around 1.4 × 105 should not be
taken as an indication of a spectral feature: a fluctuation of
this size is expected to occur in approximately 9% of
experiments due to statistical fluctuations, and even a delta
function component in the true neutrino spectrum would be
broadened into a far wider peak in the muon energy
proxy [10].

TABLE I. Fit parameters are shown for two cases: when an E−2 astrophysical flux with equal flavor composition
and equal neutrino and antineutrino components is assumed (E−2 fit) and when the index of the astrophysical flux is
allowed to vary (best fit). The listed error ranges are 68% confidence intervals. The Gaussian priors are shown as the
mean value � the standard deviation, but the fit results do not depend substantially on the priors. Units for the
astrophysical flux normalization are GeV−1 cm−2 sr−1 s−1, and HKKMS07 [20] and ERS [28] are the reference
conventional and prompt atmospheric fluxes, respectively.

Parameter E−2 fit Best fit Prior

Astrophysical flux normalization per flavor 9.9þ3.9
−3.4 × 10−19 1.7þ0.6

−0.8 × 10−18 ≥ 0

Astrophysical flux index Fixed to 2 2.2þ0.2
−0.2 None

HKKMS07 normalization 0.93þ0.05
−0.04 0.93þ0.04

−0.04 ≥ 0

ERS normalization 0.94þ1.50
−0.94 0þ1.05 ≥ 0

Cosmic ray spectral index change −0.024þ0.011
−0.011 −0.023þ.001

−.0008 0� 0.05
Detector optical efficiency þ9.1þ0.5

−0.5% þ9.1þ0.5
−0.5% None

Kaon production normalization 1.15þ0.08
−0.07 1.15þ0.08

−0.07 1� 0.1

PRL 115, 081102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

21 AUGUST 2015

081102-4



The best fit for the astrophysical component is a flux
ΦðEνÞ¼9.9þ3.9

−3.4×10
−19GeV−1 cm−2sr−1s−1ðEν=100TeVÞ−2

per flavor. The best-fit prompt component is 0.94 times the
benchmark flux but is consistent with zero. The significance
of the nonzero astrophysical flux is evaluated by a likelihood
ratio test to the null hypothesis that only atmospheric
neutrino fluxes are present, in which case, the fitted prompt
atmospheric normalization rises to 4.0 times the ERSmodel.
An ensemble of trials is used to establish the distribution
of the likelihood ratio test statistic, yielding a p value of
1.1 × 10−4 or a single-sided significance of 3.7σ.
The range of neutrino energies in which this astro-

physical flux is constrained by the data is calculated to be
330 TeV–1.4 PeV. The end points of this range are found by

applying a hard cutoff to one end of the astrophysical flux
template, refitting the data with the other astrophysical flux
parameters held constant, and moving the cutoff inward
until the resulting fit likelihood is 0.5σ worse than the best
fit. This gives a conservative estimate of the energy range in
which the astrophysical flux is necessary to explain the
observed data, although the flux may actually have a
greater extent [31]. The flux should not be interpreted as
existing strictly within this energy range; were this the case,
simulation trials suggest that this analysis would measure
a flux normalization only 5%–20% of the result shown
in Table I.
Since the true flux need not have a spectral index of

exactly 2, the fit was repeated allowing the index
to vary, leading to a result of ΦðEνÞ ¼ 1.7þ0.6

−0.8×
10−18 GeV−1 cm−2sr−1s−1ð Eν

100 TeVÞ−2.2�0.2. The nuisance
parameters do not change significantly, except for the
prompt atmospheric normalization, which falls to zero, as
shown in Table I. Figure 3 shows the confidence regions
for the astrophysical flux normalization and spectral index
and compares this result to three other IceCube analyses
using starting events [4,32,33]. The compatibility of these
results is noteworthy because this work uses an independent
set of data from the others (a single, near-horizontal, high
energy track event is shared with the other samples), while
the starting event results are highly correlated with each
other. The spectral indices found by this work and by the
starting event analyses are consistent within their respective
uncertainties, but the best-fit spectrum for this data set is
slightly harder than those for the starting event analyses,
particularly those extending to lower energies, which are
uniquely able to probe nonatmospheric contributions to the
neutrino flux. A single power law provides an acceptable
fit to all data; however, the present data cannot yet rule out
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Starting Events (LE 1) [32], Starting Events (LE 2) [33].
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the possibility that the astrophysical neutrino flux is not
isotropic or that the spectrum is not a pure power law.
In this study, we see a clear excess of data above the

expected atmospheric neutrino backgrounds at high ener-
gies, similar to the result of Ref. [4]. In particular, despite
the fact that these are almost entirely disjoint data sets
(a single, near-horizontal track event, event 5 from Ref. [4],
appears in both samples), both excesses are consistent in
normalization within uncertainties, assuming an E−2 spec-
trum: 9.5� 3 × 10−19 GeV−1 cm−2 sr−1 s−1 from the start-
ing event study and 9.9þ3.9

−3.4 × 10−19 GeV−1 cm−2 sr−1 s−1

from this work. These measurements do use different
calculations of the neutrino-nucleon cross sections, which
influence the conversion of the flux into a rate of observed
events: the starting event study used the calculation of
Ref. [34], while this study uses the updated calculation
from Ref. [35], which differs by 5%–10% at the energies
relevant to these analyses, but this is a relatively small effect
compared to the uncertainties of these results. Thus, the
observed data are found to be consistent with a flux
consisting of equal parts of all neutrino flavors. Similar
consistency is seen in a recent analysis of starting events
[33]. As shown in Fig. 3, the results for arbitrary power
laws are also in good agreement. These two measurements
are compared in Fig. 4, along with other recent measure-
ments and theoretical models. The result of this study
also suggests that astrophysical neutrinos are present at the
several hundred TeV energies where observations were
lacking in the data set of Ref. [4], suggesting that this was
merely a statistical fluctuation.
Models of the astrophysical neutrino flux besides unbro-

ken power laws can also be considered. Here we examine
a small number of representative models. One candidate

source type is the cores of active galactic nuclei (AGN)
[6,36–39]. A fit of the AGN flux model [6] to the data in
this analysis demonstrates in an incompatibility in the
normalization, with the predicted flux being too large by a
factor of 6. Another possible source class is regions with
high star formation including starburst galaxies [5,40–44].
Comparing the E−2.15 spectrum proposed by Ref. [5] to the
data reported here, we find that it is compatible after its
normalization ismultiplied by a factor of 2.5. Finally, gamma
ray bursts (GRBs) have been long considered candidates
for neutrino production [7,45–48], but recent dedicated
searches by IceCube for neutrinos correlated with GRBs
have placed strong limits disfavoring this hypothesis [49].
While this work represents the first strong evidence

for an astrophysical νμ flux in the Northern Hemisphere,
the sources producing these neutrinos remain unknown.
Although muon events in IceCube have subdegree angular
resolution, recent IceCube searches for pointlike and
extended sources of muon neutrinos found no statistically
significant evidence for event clustering or correlation of
neutrinos with known astrophysical objects [50]. In the
Northern Hemisphere, the point source flux upper limits
are 10–100 times lower than the total diffuse flux level
observed here, so the flux cannot originate from a small
number of sources without violating those limits. The
constraint on the number of sources was explored with a
simple simulation where sources were injected uniformly
over the Northern sky, with fluxes at the maximum levels
allowed by the point source upper limit at each selected
point, until the total flux reached the measured diffuse flux.
On average, at least 70 sources are required to maintain
consistency with the point source upper limits. This
assumes each source is a true point source and emits an
unbroken E−2.2 power-law flux. If the sources instead
follow harder E−2 power-law spectra, the diffuse flux
could be split across an average of ∼40 sources while
remaining consistent with the point source analysis. Given
that the diffuse flux in the Southern Hemisphere is observed
at a similar flux level, this observation suggests that the flux
has a large isotropic component dominated by a large
population of extragalactic sources, although local sources
can still have significant contributions.
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