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We study a Brownian particle passively driven by a field obeying the noisy Burgers’ equation.
We demonstrate that the system exhibits replica symmetry breaking in the path ensemble with the initial
position of the particle being fixed. The key step of the proof is that the path ensemble with a modified
boundary condition can be exactly mapped onto the canonical ensemble of directed polymers.
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Introduction.—Fluctuation and transportation in active
environments have gradually attracted attention in recent
studies of nonequilibrium physics and biophysics [1–8].
Among many problems, the prediction of the transportation
properties of biological materials in living cells is a
challenging problem in theoretical physics, and the
possibility of such a prediction is a significant step in
the control of cells [1–5]. In order to solve the problem,
recalling the theory of Brownian motion in equilibrium
environments [9], we seek for a universal principle for
fluctuation and transportation in active environments by the
analysis of trajectories of tracer particles. In particular,
currently, it is significant to discover a key concept that is
helpful in studying apparently complicated phenomena. We
thus study the motion of a tracer particle in a simple system.
When we focus on the trajectories of a tracer particle,

the most fundamental quantity is the displacement of the
particle. For example, the mean-squared displacement as a
function of time classifies diffusion behaviors such as
superdiffusion [8,10,11] and subdiffusion [12,13]. More
generally, the statistical properties of displacement during
a finite time interval are characterized by the cumulant
generating function of the displacement. This is often
referred to as the dynamical free energy of displacement,
which is associated with a statistical mechanical framework
of trajectories [14,15]. Such a framework can be developed
for other quantities such as activity [16–19] and Lyapunov
exponent [20–22]. In this context, as a remarkable result,
the study of the dynamical free energy of activity in glassy
systems led to the discovery of the first-order transition,
wherein dynamical heterogeneity is described as the
coexistence of active and inactive phases in space-time
at the first-order transition point. Since analysis of the
dynamical free energy can reveal the singular nature of
trajectories, it is useful to discover new phenomena
associated with hidden singularities of the trajectories of
a tracer particle in active environments.
In this Letter, we study the dynamical free energy of

overlap. We here briefly review the concept of overlap in
spin-glass theory [23]. Suppose that two independent
and identical mean-field spin-glass systems (replicas) are

prepared. Then, the distribution function of the overlap,
which represents the similarity between the two spin
configurations, takes a nontrivial form in the spin-glass
phase, reflecting the existence of several stable configura-
tions. This corresponds to replica symmetry breaking
(RSB). The concept of RSB has so far been applied to
information theory and computational complexity theory
[24]. Here, we apply this method of RSB detection to the
trajectories of two tracer particles [25]. That is, we prepare
two independent particles and define the overlap as the
similarity between the trajectories of both particles. We
identify RSB by the existence of a nontrivial feature of
the distribution function of the overlap. Therefore, the
dynamical phase transition reported in this Letter is
characterized by RSB in the path ensemble.
Concretely, we study an active environment obeying the

noisy Burgers’ equation [26]. The noisy Burgers’ equation
was introduced as a toy model of turbulence, and it is
equivalent to the Kardar-Parisi-Zhang (KPZ) equation [27],
which has been extensively studied [28–38]. In this study,
we find that the overlap between the trajectories of two
tracer particles obeys a nontrivial distribution, and we
subsequently provide evidence to support the claim that this
model exhibits RSB in the path ensemble.
Model.—Let xðtÞ be the one-dimensional position of a

Brownian particle at time t ∈ ½0; τ�. The particle is assumed
to be passively driven by a velocity field uðx; tÞ. The
motion of the particle is written as

_xðtÞ ¼ u(xðtÞ; t)þ ξðtÞ; ð1Þ

where _xðtÞ≡ dxðtÞ=dt and ξðtÞ represents the thermal
noise satisfying hξðtÞξðt0Þi ¼ 2Dδðt − t0Þ with the diffu-
sion constant D for the free particle. The velocity field is
assumed to obey the noisy Burgers’ equation. By setting
u ¼ −∂ϕ=∂x, the equation for ϕ is expressed as the KPZ
equation:

∂ϕ
∂t ¼ ν

∂2ϕ

∂x2 þ
1

2

�∂ϕ
∂x

�
2

þ vðx; tÞ; ð2Þ
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where vðx; tÞ represents zero-mean Gaussian white noise
with variance hvðx; tÞvðx0; t0Þi ¼ 2Bδðx − x0Þδðt − t0Þ.
More precisely, since the space-time Gaussian white noise
is not properly defined, it is necessary to introduce a cutoff
length Δx in the space coordinate [36,39]. The derivatives
in x that appear in Eq. (2) are interpreted as simple
differences. Accordingly, the field u acting on the particle
is evaluated by linear interpolation of ϕ. Hereafter, we
assume that all quantities are made dimensionless. We set
Δx ¼ 0.5, and we find later that this choice of Δx does not
lead to any problems because all other length scales in this
study are larger than Δx. For completeness, we also note
the range of the particle position and the domain of the KPZ
field. They are defined in a finite region with length L under
periodic boundary conditions, and L is chosen to be
sufficiently large such that the particle does not reach
the boundaries within the observation time.
Before presenting our results, we briefly review previous

studies involving this model. This model has been exam-
ined as an example of scalar turbulence [40], and it exhibits
the remarkable phenomenon that noninteracting particles
passively driven by the field cluster with time, wherein
coalescence of valleys of the KPZ surface over time plays a
key role [41]. Theoretically, renormalization group analysis
has been performed for this model [42]. Furthermore,
clusterization in the steady state has been detected by
studying density-density correlation functions [43,44].
These previous studies indicate that particles in this model
show a tendency towards localization. However, to the best
of our knowledge, RSB in the path ensemble has never
been reported.
Numerical result.—We first present the numerical sim-

ulation results of the model. In particular, we focus on the
D ¼ ν case, which corresponds to a fixed point of the
renormalization group [42,45]. Time integration is per-
formed by employing the simplest discretization method
with Δt ¼ 0.01. We fix the initial position of the particle as
xð0Þ ¼ L=2 with L ¼ 10 000. The initial value of the field,
ϕðx; 0Þ, is sampled from the stationary probability distri-
bution of Eq. (2) [36]. Numerically, we obtain the dis-
tribution as the result of a sufficiently long time evolution
of ϕ. The parameter values are fixed as D ¼ ν ¼ 1.0 and
B ¼ 2.5. Here, it should be noted that there are two sources
of randomness, ξðtÞ and vðx; tÞ. In calculating an ensemble
average of physical quantities, we first take the statistical
average over N1 histories of noise ξ for one realization of
uðx; tÞ, and we subsequently consider the configurational
average over N2 realizations of v. The convergence of
quantities with respect to the choice of ðN1; N2Þ is carefully
checked, and the numerical data presented below are
obtained for N1 ¼ 80 000 and N2 ¼ 1000.
We start with the observation of the trajectories for one

realization of uðx; tÞ. As displayed in Fig. 1, each has the
features of a typical trajectory of Brownian motion, while
there exists a region in which several trajectories overlap.

We next proceed to quantify this observation. In the rest of
this Letter, the ensemble average with respect to both ξðtÞ
and vðx; tÞ is taken for all physical quantities.
First, in the left panel of Fig. 2, the mean-squared

displacement of σ ≡ jxðtÞ − xð0Þj as a function of t is
displayed. The particle behavior deviates from the normal
diffusion type, and the anomalous diffusion hσ2i ∼ t4=3 is
observed in the long time regime, as discussed in
Refs. [41,42]. A distribution of σ is also shown in the
right panel of Fig. 2. Throughout this Letter, we use the
same symbols (and colors) for such distribution functions
with the same t. Since the width of PðσÞ increases with time
t, localization phenomena are not detected by studying the
one-particle behavior.
Next, the mean-squared value of the relative distance

d≡ jxð1Þ − xð2Þj for two trajectories xð1Þ and xð2Þ under the
same uðx; tÞ is investigated. The normal relative diffusion
behavior hd2i ∼ t is clearly observed in the left panel of
Fig. 3. On the other hand, as shown in the right panel of
Fig. 3, the distribution of d at time t, which is denoted by
PtðdÞ, is far from the Gaussian distribution that is obtained
for free Brownian particles. As a characteristic feature of
PtðdÞ, it is observed that the value of PtðdÞ for d < 60 does
not change over time when t > 200. The existence of such
a time-independent behavior indicates that the interdistance
of two particles is not significantly larger than a certain
characteristic length. This indication provides one piece of
quantitative evidence for a localization phenomenon. In our
study, we estimated the characteristic length scale in this
region as d0 ¼ 4.2 [46]. We remark here that such a
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FIG. 1 (color online). Trajectories of a Brownian particle for
one realization of uðx; tÞ. Ten samples are displayed.

FIG. 2 (color online). The left panel shows the mean-squared
displacement hσ2i as a function of t in a log-log plot. The straight
lines represent the normal diffusion behavior hσ2i ∼ t and the
anomalous diffusion behavior hσ2i ∼ t4=3, respectively. The right
panel shows the distribution of σ for various values of t. A
logarithmic scale is used for the vertical axis.
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diffusion scaling with a non-Gaussian distribution has
attracted considerable research attention recently [4,52].
In order to characterize this phenomenon as a dynamical

singularity in the path ensemble, we next use an analogywith
the spin-glass theory. We consider the overlap defined by

q≡ 1

M

XM
j¼1

θðl − jxð1ÞðjΔtÞ − xð2ÞðjΔtÞjÞ; ð3Þ

for two trajectories xð1Þ and xð2Þ under the same uðx; tÞ. Here,
M≡ t=Δt and we have introduced the length scale l
characterizing the localization. From the above discussion,
l should be close to d0. For simplicity, we set l ¼ 5. In the
left panel of Fig. 4, we show the distribution function of the
overlap,PðqÞ, for different values of t. There are two peaks at
q ¼ 0 and q ¼ q�ðtÞ for every t, which is a characteristic
behavior observed in the one-step RSB (1RSB) [24]. The
peak value at q ¼ 0 and the peak position q�ðtÞ are shown in
the right panels of Fig. 4. It appears that these approach finite
values in the limit t → ∞. In this work, we determine that
RSB in the path ensemble occurs in the model under study.
The presence of two peaks in PðqÞ indicates the

coexistence of a high-overlap phase and a low-overlap
phase in space-time. When we introduce the generating
function of q as ψðϵÞ≡ limτ→∞ logheτϵqi=τ, which is the
dynamical free energy of overlap, the coexistence leads to a
singularity in the dynamical free energy at ϵ ¼ 0, which
implies a dynamical phase transition. We note that such a
dynamical phase transition can be described in terms of the
path ensemble of two independent systems biased by

overlap. RSB in the trajectories indicates that the trajecto-
ries of two independent systems with a positive (zero)
overlap are most weighted by an infinitely small positive
(negative) bias ϵ, which results in a singularity at ϵ ¼ 0.
Analysis.—We present arguments to support the occur-

rence of RSB in the path ensemble. A key observation is
that the ensemble of trajectories of the particle under a
modified boundary condition is equivalent to the canonical
ensemble of directed polymers with one end fixed that are
subjected to a random potential. Explicitly, when we
consider Eqs. (1) and (2) with boundary conditions xðτÞ ¼
x0 ¼ L=2 and ϕðx; 0Þ ¼ 0, the path probability density of
the particle is written as

P½xjxðτÞ ¼ x0� ¼
1

ZDP
e−ð1=4DÞ

R
τ

0
dt½_xðtÞ2−2v(xðtÞ;t)�; ð4Þ

where ZDP represents the normalization constant. The
proof is as follows. We first write the Onsager-Machlup
expression of the path probability density as

P½xjxðτÞ ¼ x0� ¼
1

Z0

e−ð1=4DÞ
R

τ

0
dt½_xðtÞþð∂ϕ=∂xÞ(xðtÞ;t)�2

× e−ð1=2Þ
R

τ

0
dtð∂2ϕ=∂x2Þ(xðtÞ;t); ð5Þ

where Z0 denotes the normalization constant, and the
second term in the exponential arises from the trans-
formation from ½ξðtÞ�τt¼0 to ½xðtÞ�τt¼0, with xðτÞ fixed
[53]. We subsequently rewrite Eq. (5) using Eq. (2) as

P½xjxðτÞ ¼ x0�

¼ 1

Z0

e−ð1=4DÞ
R

τ

0
dt½_xðtÞ2þ2ðd=dtÞϕ(xðtÞ;t)−2ð∂ϕ=∂tÞ(xðtÞ;t)�

× e−ð1=4DÞ
R

τ

0
dtf½ð∂ϕ=∂xÞ(xðtÞ;t)�2þ2Dð∂2ϕ=∂x2Þ(xðtÞ;t)g;

¼ 1

Z0

e−ð1=2DÞ½ϕ(xðτÞ;τ)−ϕ(xð0Þ;0)�−ð1=4DÞ
R

τ

0
dt½_xðtÞ2−2v(xðtÞ;t)�;

¼ 1

Z0

e−ð1=2DÞϕðx0;τÞ−ð1=4DÞ
R

τ

0
dt½_xðtÞ2−2v(xðtÞ;t)�: ð6Þ

Since the first term of the exponential can be absorbed into
the normalization constant, we obtain Eq. (4).
The statistical model (4) has been extensively studied

[36,54–62]. It has been shown that the system is in the
frozen phase for B > 0 and D < ∞. The most important
result here is that the replica symmetry of the system is
broken [54,55], which is obtained by the replica Bethe
ansatz calculation and the numerical calculation of the
transfer matrix for a discretized model. Thus, the equiv-
alence demonstrated above implies that the Langevin
model with xðτÞ fixed also exhibits RSB.
Therefore, if the particle behavior in the time region 1 ≪

t ≪ τ is independent of xð0Þ and xðτÞ, the original model
with xð0Þ fixed (which is easily prepared in experiments)
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FIG. 3 (color online). The left panel shows the mean-squared
relative distance hd2i as a function of t in a log-log plot. The
straight line represents the normal diffusion behavior hd2i ∼ t.
The right panel shows the distribution of d for various values of t.
A logarithmic scale is used for the vertical axis.

FIG. 4 (color online). Distribution of the overlap q for various t
(left panel) and their peak values at q ¼ 0 and peak positions
q�ðtÞ (right panels).
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can be shown to exhibit RSB. Although the validity of
the independence of xð0Þ and xðτÞ is not assured, we can
verify it in numerical simulations. That is, we numerically
investigate the modified system with xðτÞ fixed and
compare the results with those obtained for the original
model [63]. In the left panel of Fig. 5, we show PðqÞ for the
modified system. This result is nearly identical to that of
the original case. The peak value and the nontrivial peak
position also behave in the same way as in the original
model, as seen in the right panels of Fig. 5. Thus, we can
confidently conclude that PðqÞ is independent of xð0Þ and
xðτÞ, and this implies that the original model definitely
exhibits RSB. See Ref. [64] for discussions on the type
of RSB.
At the end of our analysis, we attempt to provide a

physical picture of RSB in the path ensemble. In Ref. [41],
it was found for the D ¼ 0 case that valleys (local minima)
of the velocity potential ϕ move continuously and even-
tually coalesce. Therefore, when D ¼ 0, independent
particles with slightly different initial conditions cluster
in a specific valley, which leads to PðqÞ concentrated on
q ¼ 1. However, in our model with D > 0, a particle can
escape from one valley of ϕ to another valley due to thermal
noise ξ. We subsequently explain that this activation effect
is too weak to remove the concentration of PðqÞ on a finite
overlap. First, it has been known that the steady-state
distribution of the KPZ equation is equivalent to the
probability distribution of a random potential field in the
continuous version of the Sinai model [65], where ultra-
slow diffusion hxðtÞ2i ∼ ðlog tÞ4 is observed. Now, let us
suppose that we observe the distance of two independent
particles with different thermal noises during a time interval
t. The distance would be O(ðlog tÞ2) for large t if the
potential were frozen. On the other hand, particles whose
distance from each other is within a length scale lco cluster
in one valley by coalescences of valleys, where lco is
expected to beOðtαÞwith some α > 0 for large t because it
is determined by the diffusive nature of motion of the
valleys. Therefore, from tα ≫ ðlog tÞ2 for large t, we
conclude that the phenomenon observed in the system
with D ¼ 0 is robust to thermal noise. The importance of

the coalescence of valleys can be understood from the
absence of RSB for the case where particles are driven by a
field obeying the Edwards-Wilkinson (EW) equation [66],
because the steady-state probability distribution of the
potential field for the EW equation is the same as that
for the KPZ equation, while the valleys of the potential do
not coalesce.
Concluding remarks.—We discuss previous studies

related to our results. It has been known that two inde-
pendent and identical dynamical systems exhibit mutual
attraction of trajectories with slightly different initial
conditions when they are subject to a common noise.
Examples include synchronization of two independent
oscillators driven by a common noise [67,68], and aggre-
gation of independent particles driven by a common
Gaussian random velocity field [69,70] or a common
spatiotemporal chaotic field [71]. A more recent work
on diffusive fluctuating hydrodynamics reports a similar
phenomenon through the analysis of the dynamical free
energy of the Lyapunov exponent [22]. These phenomena
are similar to that studied in our Letter in that attraction of
trajectories in two independent and identical systems is
concerned. One can interpret that a common disordered
velocity field in our study corresponds to a common noise
in previous studies. Although this interpretation is reason-
able, the two systems in our study are subject to indepen-
dent thermal noises in addition to a common velocity field,
which makes a contrast to previous studies. We also remark
that mutual attraction of trajectories in two independent
systems was observed in our system without thermal noise
[41]. We emphasize that to find the common-noise-induced
attraction robust against independent noises is a highly
nontrivial problem, which corresponds to the discovery of a
phase transition at finite temperature for a symmetry
breaking at T ¼ 0 in equilibrium statistical mechanics.
The main achievement of our study is that we solve this
problem by using the concept of RSB.
In sum, we have demonstrated RSB in trajectories for a

tracer particle passively driven by a field obeying the noisy
Burgers’ equation. In this model, two tracer particles driven
by a common velocity field are always close to each other
when they freeze to the same trajectory, while they become
separated from each other with time when each particle
freezes to a different trajectory. These two cases correspond
to two peaks in PðqÞ at q ¼ q� and q ¼ 0, respectively.
Such a pathological transportation property is detected only
by the observation of PðqÞ. We believe that the dynamical
free energy of overlap will be a useful tool to characterize a
singularity of trajectories for a wide class of phenomena
including chemical networks [72] and cell differentiation
[73,74].
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FIG. 5 (color online). Statistical properties of the ensemble (5).
The distribution of the overlap, PðqÞ, for various t0 ≡ τ − t are
plotted in the left panel, and their peak values at q ¼ 0 and peak
positions q�ðt0Þ are displayed in the right panels. The symbols
and color labels in the graph with t0 are the same as those in the
graph with t in Fig. 4.
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