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The Wiener-Khinchin theorem shows how the power spectrum of a stationary random signal IðtÞ is
related to its correlation function hIðtÞIðtþ τÞi. We consider nonstationary processes with the widely
observed aging correlation function hIðtÞIðtþ τÞi ∼ tγϕEAðτ=tÞ and relate it to the sample spectrum. We
formulate two aging Wiener-Khinchin theorems relating the power spectrum to the time- and ensemble-
averaged correlation functions, discussing briefly the advantages of each. When the scaling function
ϕEAðxÞ exhibits a nonanalytical behavior in the vicinity of its small argument we obtain the aging 1=f-type
of spectrum. We demonstrate our results with three examples: blinking quantum dots, single-file diffusion,
and Brownian motion in a logarithmic potential, showing that our approach is valid for a wide range of
physical mechanisms.

DOI: 10.1103/PhysRevLett.115.080602 PACS numbers: 05.40.-a, 05.45.Tp

Understanding how the strength of a signal is distributed
in the frequency domain is central both in practical
engineering problems and in physics. In many applications,
a random process IðtÞ recorded in a time interval ð0; tmÞ
is analyzed with the sample spectrum StmðωÞ ¼
j R tm

0 IðtÞ expð−iωtÞdtj2=tm, which is investigated in the
limit of a long measurement time tm. For stationary
processes, the fundamental Wiener-Khinchin theorem [1]
relates between the power spectrum density and the
correlation function CðτÞ ¼ hIðtÞIðtþ τÞi

lim
tm→∞

hStmðωÞi ¼ 2

Z
∞

0

CðτÞ cosðωτÞdτ: ð1Þ

However, in recent years there is growing interest in the
spectral properties of nonstationary processes, where the
theorem is not valid [2–10]. In general, there seems no
point to discuss and classify spectral properties of all
possible nonstationary processes. Luckily, a wide class
of physical systems and models exhibit a special type of
correlation functions hIðtÞIðtþ τÞi ∼ tγϕEAðτ=tÞ for an
observable IðtÞ and the subscript EA denotes an ensemble
average. Such correlation functions, describing what is
referred to as physical aging, appear in a vast array of
systems and models ranging from glassy dynamics
[2,11–13], blinking quantum dots [14], laser cooled atoms
[15], motion of a tracer particle in a crowded environment
[16,17], elastic models of fluctuating interfaces [18],
deterministic noisy Kuramoto models [19], granular gases
[20], and deterministic intermittency [21], to name only a
few examples. In some cases, the scaling function exhibits a
second scaling exponent, hIðtÞIðtþ τÞi ∼ tγϕEAðτ=tβÞ, or
even a logarithmic time dependence [11]; however, here
we will avoid this zoo of exponents, and attain classifica-
tion of the spectrum for the case β ¼ 1.
A natural problem is to relate between the sample

spectrum of such processes and the underlying correlation

function [3]. That such a relation actually exists is obvious
from the basic definition of the sample spectrum; see
Eq. (2) below. However, here we find a few interesting
insights. First, the correlation function in its scaling form
hIðtÞIðtþ τÞi ∼ tγϕEAðτ=tÞ is valid in physical situations, in
the limit of large t and τ. We here first formulate a theorem
for ideal processes, where the aging correlation function is
valid for all τ and t, and then at the second part of the Letter,
explore by comparison to realistic models the domain of
validity of the ideal models. As a rule of thumb the aging
Wiener-Khinchin theorem presented here for ideal models
works well in the limit of low frequency. Further, the limit of
small frequency and measurement time tm being large is not
interchangeable and should be taken with care. Second, the
spectrum in these processes depends on time tm, as already
observed in [3,22]. The nonstationarity also implies a
third theme, namely, that the ensemble-averaged correlation
function is nonidentical to the time-averaged correlation
function, in contrast with the usual Wiener-Khinchin sce-
nario. Thus, we formulate two theorems, relating between
time- and ensemble-averaged correlation functions and
the sample spectrum. The choice of theorem to be used in
practice depends on the application.
In physics, the power spectrum is not only a measure of

the strength of frequency modes in a system. Nyquist’s fluc-
tuation dissipation theorem, for systems that are close to
thermal equilibriumand hence stationary, states that the ratio
between the power spectrum and the imaginary part of the
response function, χðωÞ, is given by temperature, i.e., kBT ¼
πωSðωÞ=2Im½χðωÞ� [23]. Similarly, effective temperatures
are routinely defined by relating measurements of power
spectrum and response functions of nonstationary processes
[24–26]. Our goal here is to provide the connection between
the sample spectrum and the correlation functions, without
which the meaning of the effective temperature becomes
somewhat ambiguous. More practically, an experimentalist
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who uses the sample spectrum to estimate the spectrum
of a nonstationary process might wish to extract from it the
time- and/or the ensemble-averaged correlation functions,
and for that our work is valuable.
Aging Wiener-Khinchin theorem for time-averaged cor-

relation functions.—For a general process, the autocorre-
lation function hIðtÞIðtþ τÞi is a function of its two
variables, unlike stationary processes, where the correlation
function depends only on the time difference τ. Using the
definition of the sample spectrum we have

tmhStmðωÞi ¼
Z

tm

0

dt1

Z
tm

0

dt2eiωðt2−t1ÞhIðt1ÞIðt2Þi: ð2Þ

We identify in this equation the ensemble-averaged corre-
lation function, but a formalism based on a time averagewill
turn out more connected to the original Wiener-Khinchin
theorem, as we proceed to show. A change of variable
τ ¼ t2 − t1 and relabeling integration variables gives

hStmðωÞi ¼
2

tm

Z
tm

0

dτðtm − τÞhCTAðtm; τÞi cos ðωτÞ: ð3Þ

Here, the time-averaged correlation function is defined as

CTAðtm; τÞ ¼
1

tm − τ

Z
tm−τ

0

dt1Iðt1ÞIðt1 þ τÞ: ð4Þ

We now insert in Eq. (3) an aging correlation function

hCTAðtm; τÞi ¼ ðtmÞγφTAðτ=tmÞ; ð5Þ
and defining a new integration variable 0 < ~τ ¼ τ=tm < 1
we find

hStmðωÞi ¼ 2ðtmÞ1þγ

Z
1

0

d~τð1 − ~τÞφTAð~τÞ cos ðωtm ~τÞ:
ð6Þ

This formula relates between the time-averaged correlation
function and the average of the sample spectrum, for ideal
processes in the sense that we have assumed that the scaling
of the correlation function holds for all times. It shows that
the frequencyω times tm is the scaling variable of the power
spectrum.
Aging Wiener-Khinchin formula for the ensemble-

averaged correlation function.—We now relate the power
spectrum with the ensemble-averaged correlation function
which has a scaling form

hIðtþ τÞIðtÞi ¼ tγϕEAðτ=tÞ: ð7Þ
The two correlation functions are related with Eq. (4),
which upon averaging gives

φTAðxÞ ¼ xγyðxÞ
Z

∞

yðxÞ

ϕEAðzÞ
z2þγ dz ð8Þ

with yðxÞ ¼ x=ð1 − xÞ. Considering the case γ ¼ 0 we
insert Eq. (8) in Eq. (6) and find

hStmðωÞi ¼ 2tm

Z
1

0

ϕEA

�
x

1 − x

�

×
~ωx sinð ~ωxÞ þ cosð ~ωxÞ − 1

ð ~ωxÞ2 dx ð9Þ

with ~ω ¼ ωtm. For the more general case γ ≠ 0 we show in
the Supplemental Material [27] that

hStmðωÞi ¼
2ðtmÞγþ1

2þ γ

Z
1

0

ð1 − xÞγϕEA

�
x

1 − x

�

× 1F2

�
1þ γ

2
;
1

2
; 2þ γ

2
;−

�
~ωx
2

�
2
�
dx; ð10Þ

where 1F2 is a hypergeometric function and γ > −2.
This relation between the ensemble-averaged correlation

function and the sample averaged spectrum is useful for
theoretical investigations, when a microscopical theory
provides the ensemble average. Alternatively, one may
use the relation equation (8) to compute the time-averaged
correlation function from the ensemble average (if the latter
is known) and then use the time-averaged formalism
equation (6) which is based on a simple cosine transform.
The transformation equation (10) depends on γ, which in
experimental situations might be unknown (though it could
be estimated from data), while Eq. (6) does not; still, both
formalisms are clearly identical and useful.
Relation with 1=f noise.—We now consider a class of

aging correlation functions, with the additional character-
istic behavior for small variable τ=t,

hIðtÞIðtþ τÞi ∼ tγ
�
AEA − BEA

�
τ

t

�
ν
�
: ð11Þ

Here AEA; BEA > 0; 0 < ν < 1; γ > −1, and γ − ν > −1.
Physical examples will soon follow. We use Eqs. (4), (5),
(7), and (8) and by a comparison of coefficients of the small
argument expansion, we show that the time-averaged cor-
relation function has a similar expansion, with hCTAðt; τÞi∼
tγ½ATA − BTAðτ=tÞν þ � � �� with ATA ¼ AEA=ð1þ γÞ and
BTA ¼ BEA=ð1þ γ − νÞ. We can then insert this expansion
in Eq. (6), by integration by parts, and using ωtm¼2πn≫1
where n is an integer

hStmðωÞi ∼
2Γð1þ νÞ sinðπν

2
ÞBEA

ðγ − νþ 1ÞðtmÞν−γω1þν : ð12Þ

We see that the nonanalytical expansion of the correlation
function, in the small argument, leads to a 1=f-type of
noise, with an amplitude that depends on measurement
time. Such an aging effect in the power spectrum was
recently measured for blinking quantum dots [22], so this
shall be our first example.
Blinking quantum dots and trap model.—As measure-

ments show blinking quantum dots, nano wires and organic
molecules exhibit episodes of fluorescence intermittency,
switching randomly between on and off states [28–30]. The
on and off waiting times are random with a common power
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law waiting time distribution ψðτÞ ∼ Aτ−ð1þαÞ, a behavior
valid under certain conditions, like low temperature and a
weak external laser field. For this simple renewal model,
and when the average on and off times diverge, namely,
0 < α < 1, we have γ ¼ 0 and the correlation function,
with intensity in the on state taken to be I0 and in the off
state to be zero, is [14]

ϕEAðxÞ ¼ I20

�
1

2
−
1

4

sinðπαÞ
π

B

�
x

1þ x
; 1 − α; α

��
; ð13Þ

where x ¼ τ=t and Bðz; a; bÞ is the incomplete Beta
function. Importantly, this type of correlation function
describes not only blinking dots, but also the trap model,
a well-known model of glassy dynamics [13]. The con-
nection between the two systems are the power law waiting
times in microstates of the system, though for the trap
model α¼T=Tg where T is temperature, while 0.5<α<0.8
in quantum dots experiments. Equation (13) is valid only in
a scaling limit for large τ and twhen the microscopic details
of the model, e.g., the shape of the waiting time distribution
ψðτÞ for short on and off blinking events, are irrelevant.
Thus, the scaling solution is controlled only by the
parameter α. The time-averaged correlation function is
obtained from Eqs. (8) and (13)

φTAðxÞ¼
I20
4
þI20

4

sinðπαÞ
π

�
Bð1−x;α;1−αÞ

1−x
−
1

α

�
x

1−x

�
1−α

�
;

ð14Þ

which is clearly nonidentical to the corresponding ensem-
ble average. We may now use either Eq. (6) for the time
average or Eq. (9) for the ensemble average to obtain
StmðωÞ. Since γ ¼ 0 we use Eq. (9) and find

hStmðωÞi=tm ¼ I20

�
sinc2ð ~ω

2
Þ

4
þ 1

2 ~ω
ℑ½Mð1 − α; 2; { ~ωÞ�

�
;

ð15Þ
where Mða; b; zÞ is the Kummer confluent hypergeometric
function and ℑ½·� refers to its imaginary part. We note that
the sinc2ð ~ω=2Þ term is the spectrum contribution from a
constant hĪ2i. As shown in Fig. 1, the spectrum equa-
tion (15) perfectly matches finite time simulation of the
process where we used ψðτÞ ¼ ατ−ð1þαÞ for τ > 1, α ¼ 0.5,
I0 ¼ 1, and an average over 103 on-off blinking processes
was made. This indicates that the scaling approach works
well, even for reasonable finite measurement time. The
theory predicts nicely not only the generic 1=f behavior but
also the fine oscillations and the crossover to the low
frequency limit. As Fig. 1 demonstrates, when ωtm is large,
we get the 1=f noise result, which according to Eq. (12) is

hStmðωÞiωtm≫1
≈
I20 cosðαπ=2Þ
2Γð1þ αÞ ðtmÞα−1ωα−2; ð16Þ

for 0 < α < 1. In this model ν ¼ 1 − α as the small
argument expansion of Eq. (13) shows. The asymptotic
equation (16) agrees with previous approaches [3], the
latter missing the low frequency part of the spectrum, and
the fine structure of the spectrum presented in Fig. 1, since
for those nontrivial aspects of the theory one needs the
aging Wiener-Khinchin approach developed here. Finally,
we have assumed that the start of the blinking process is at
t ¼ 0 (corresponding to the switching on of the laser field),
which is the moment in time where we start recording the
power spectrum. If one waits a time tw before the start of
the measurement, the power spectrum will depend on the
waiting time tw since the process is nonstationary [2].
We note that a model with cutoffs on the aging behaviors

was investigated in [31]; in this case, the asymptotic behavior
is normal, namely, the Wiener-Khinchin theorem holds.
Indeed, in experiments on blinking quantum dots with a
measurement time of 1800 seconds, the aging of the spec-
trum is still clearly visible [22]; the lattermeasurement time is
long in the sense that blinking events are observed already on
the μs time scale. Hence, cutoffs, while possibly important in
some applications, are not relevant at least in this experiment.
Single-file diffusion.—We consider a tagged Brownian

particle in an infinite unidimensional system, interacting
with other identical particles through hard core collisions
[32–34]. This well-known model of a particle in a crowded
pore is defined through the free diffusion coefficient D
describing the motion of particles between collision events
and the averaged distance between particles a. Initially at
time t ¼ 0 the particles are uniformly distributed in space
and the tagged particle is on the origin. In this many body
problem, the motion of the tracer is subdiffusive hx2ðtÞi ∼
a

ffiffiffiffiffiffiffiffiffi
D=π

p ffiffi
t

p
since the other particles are slowing down the

tracer particles via collisions [32]. Normal diffusion is
found only at very short times t < a2=D when the tracer
particle has not yet collided with the other surrounding
Brownian particles. Our observable [so far called IðtÞ]
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FIG. 1 (color online). Power spectral density for the blinking
quantum dot model with α ¼ 0.5 with measurement time
tm ¼ 105. Theory equation (15) (red line) perfectly matches
finite time simulation (blue open circles) and asymptotically the
1=f noise equation (16) (green line).
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is the position of the tracer particle in space xðtÞ. The
correlation function in the long time scaling limit is [16,17]

hxðtÞxðtþ τÞi ¼ a

ffiffiffiffi
D
π

r ffiffi
t

p � ffiffiffiffiffiffiffiffiffiffiffi
1þ τ

t

r
þ 1 −

ffiffiffi
τ

t

r �
: ð17Þ

Such a correlation function describes also the coordinate of
the Rouse chain model, a simple though popular model of
Polymer dynamics [35]. Then by insertion and integration
we find, using Eqs. (6) and (8),

ðtmÞ−3=2
ffiffiffiffiffiffiffiffiffi
π

Da2

r
hStmðωÞi¼

1

~ω5=2

ffiffiffiffi
~ω

p
½2þ cosð ~ωÞ�

−
ffiffiffiffiffiffi
2π

p

2 ~ω5=2 ½1þ2cosð ~ωÞ�Cð
ffiffiffiffiffiffiffiffiffiffiffi
2 ~ω=π

p
Þ

þ
ffiffiffiffiffiffi
2π

p

~ω5=2 Sð
ffiffiffiffiffiffiffiffiffiffiffi
2 ~ω=π

p
Þ½− ~ωþ sinð ~ωÞ�;

ð18Þ
where the Fresnel functions are defined as CðuÞ≡R
u
0 cosðπt2=2Þdt and SðuÞ≡ R

u
0 sinðπt2=2Þdt. Generating

103 trajectories of single-file motion for a system with 2001
particles, with the algorithm in [17], we have found the
sample spectrum of the process xðtÞ. As Fig. 2 demon-
strates, theory and simulation for hStmðωÞi perfectly match
without fitting. From the correlation function equation (17)
we have γ ¼ ν ¼ 1=2 and hence, according to Eq. (12),

hSðωÞi ∼
ffiffiffiffiffiffiffiffiffi
a2D
2

r
ω−3=2 ð19Þ

for ωtm ≫ 1. This equation is the solid line presented in
Fig. 2 which is seen to match the exact theory already for
not too large values of ωtm. As in the previous example,
the aging Wiener-Khinchin framework is useful in the
predictions of the deviations from the asymptotic result, as

Fig. 2 clearly demonstrates some nontrivial wiggliness
perfectly matching simulations.
As mentioned in the Introduction, we have assumed a

scaling form of the correlation function equations, (5) and
(7), which works in the limit of t; τ → ∞. Information on
the correlation function for short times is needed to estimate
the very high frequency limit of the spectrum. Hence, the
deviations at high frequencies in Fig. 2 are expected. As
measurement time is increased, the spectrum plotted as a
function of ωtm perfectly approaches the predictions of our
theory (see also the following example and Fig. 3).
Diffusion in a logarithmic potential.—While our pre-

vious examples are based on long tailed trapping times and
many body interactions, which lead to a long term memory
in the dynamics, we will now briefly discuss a third
mechanism using overdamped Langevin dynamics in a
system which attains thermal equilibrium. Consider the
position xðtÞ, which is the observable IðtÞ, of a particle with
massm in a logarithmic potentialUðxÞ ¼ U0 lnð1þ x2Þ=2,

dx
dt

¼ −
1

mγ̄

∂U
∂x þ ηðtÞ: ð20Þ

Here the noise is white with mean equal zero satisfying
the fluctuation dissipation theorem and γ̄ is a friction
constant. Under such conditions the equilibrium probability
density function is given by Boltzmann’s law PeqðxÞ ¼
exp½−UðxÞ=kBT�=Z where Z is the partition function and T
is the temperature. A key observation is that the potential
is asymptotically weak in such a way that Peq ∼ x−U0=kBT

for large x and for normalization to be finite we assume
U0=kBT > 1. The system thus exhibits large fluctuations in
its amplitude in the sense that in equilibrium hx2i diverges in
the regime U0=kBT < 3. Of course, for any finite mea-
surement time the variance of xðtÞ, starting on the origin, is
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FIG. 2 (color online). The power spectrum of tagged particle
motion xðtÞ with measurement times tm ¼ 103 (blue closed
circles) and tm ¼ 102 (pink multicrosses). For this, the single-
file model theory equation (18) (red line) and asymptotic
1=f approximation equation (19) nicely match simulation results.
In the simulation we used D ¼ 1=2 and a ¼ 1. Finite time
deviations for tm ¼ 102 are observed at high frequency as
discussed in text.
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FIG. 3 (color online). Power spectrum of Brownian motion in a
logarithmic potential (symbols) matches the asymptotic theory
predicting the 1=f-type of noise equation (21) (green line). We
use α ¼ 1.75, tm ¼ 5 × 102 (red triangles), and tm ¼ 2 × 103

(blue open circles) with U0 ¼ 1, γ̄ ¼ 1, and m ¼ 1. In addition,
we plot the theoretical zero frequency prediction hStmð0Þi (black
line); see the Supplemental Material [27]. The ensemble average
was taken over 5000 realizations.
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increasing with time but finite. Let α ¼ U0=ð2kBTÞ þ ð1=2Þ
andwe focus on the case1 < α < 2. The correlation function
in this case was investigated in [36]. We here study only the
1=f part of the spectrum, demonstrating the versatility of
the theory using Eq. (12), since, unlike previous cases, the
correlation function is cumbersome. To find the 1=f noise
we need to know, from the ensemble-averaged correlation
function, γ; ν and BEA, while AEA must be finite (similar
steps for other models will be published elsewhere [37]).
As detailed in the Supplemental Material [27], γ ¼ ν ¼
2 − α and BEA ¼ ffiffiffi

π
p ð4DÞ2−αc1=½ZΓðαÞΓð1þ αÞ� and

AEA ¼ BEAΓð1þ αÞ=½ ffiffiffi
π

p ð2 − αÞc1� with D ¼ kBT=mγ̄,
the diffusion constant according to the Einstein relation;
hence, by using Eq. (12) we obtain

hSðωÞi ∼ 2Γð3 − αÞ sin
�
απ

2

�
BEA

1

ω3−α : ð21Þ

The constant c1 is given in terms of an integral of a special
function [27].We have simulated the Langevin equation (20)
and obtained finite time estimates for the power spectrum,
which match the prediction, Eq. (21), as shown in Fig. 3
without fitting. Importantly, the model of diffusion in the
logarithmic field is applicable inmany systems, including the
diffusion of cold atoms in optical lattices [38].
Summary and discussion.—We have presented general

relations between the sample spectrum and the time- or
ensemble-averaged correlation function equations, (3) and
(9), respectively. Those relations work for physical models
in the limits tm → ∞ and ω → 0 while the product ωtm is
finite. In experiment tm might be long, but it is always
finite. Hence, the theorem will work in practice in the low
frequency regime. Indeed, a close look at Figs. 2 and 3
shows finite time deviation at large frequencies; the aging
spectrum is approached when tm is increased. The fact that
the scaled correlation function is observed in a great variety
of different systems serves as evidence of the universality
of our main results, i.e., Eqs. (3) and (9).

This work was supported by the Israel Science
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Note added in proof.—After this work was completed a
related study was published [39].
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