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We formulate a convergent sequence for the energy gap estimation in theworldline quantumMonte Carlo
method. The ambiguity left in the conventional gap calculation for quantum systems is eliminated. Our
estimation will be unbiased in the low-temperature limit, and also the error bar is reliably estimated. The
level spectroscopy from quantum Monte Carlo data is developed as an application of the unbiased gap
estimation. From the spectral analysis, we precisely determine the Kosterlitz-Thouless quantum phase-
transition point of the spin-Peierls model. It is established that the quantum phonon with a finite frequency
is essential to the critical theory governed by the antiadiabatic limit, i.e., the k ¼ 1 SU(2) Wess-Zumino-
Witten model.
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The excitation gap is one of the most fundamental
physical quantities in quantum systems. The Haldane phase
and the Z2 topological phase are characterized by the
topologically protected gap [1]. Recently, the existence of
gapful or gapless quantum spin-liquid phases has been
discussed in frustrated spin systems [2]. Not only in the
gapful but also critical phases, the system-size dependence
of the excitation gap is useful for the analysis of the
quantum phase transition [3]. Particularly, the energy gapΔ
in the conformal quantum phases scales as Δ ∝ xv=L,
apart from possible logarithmic correction, where L is
the system size, x is the scaling dimension, and v is the
velocity appearing in the conformal field theory [4]. An
unbiased gap calculation, thus, allows for extracting
the universal properties of the critical phases from finite-
size data.
The gap estimation for large systems is not trivial. For

small systems, it is possible to calculate the gap by the exact
diagonalization method. The reachable system size is,
however, strongly limited because of the explosion of
required memory size and computation time. The density
matrix renormalization group (DMRG) method [5] works
well for many one-dimensional systems, but it becomes
less effective in gapless or degenerated phases. In the
meantime, the quantumMonte Carlo (QMC) method based
on the worldline representation is a powerful method for
various strongly correlated systems without dimensional
restriction [6]. In previous QMC calculations [7], the gap is
extracted by the fitting of the correlation function; the
tail of the exponential function is estimated as a fitting
parameter [see Eq. (1) below]. Here we encounter a
trade-off between the systematic error and the statistical

error. The lower the temperature is in a QMC simulation,
the smaller the systematic error becomes, but the stat-
istical error becomes larger. It is because the correlation
in long imaginary time has an exponentially small
absolute value. Since in practice we do not have prior
knowledge of the optimal temperature and the range of
imaginary time where the correlation function follows
the asymptotic form, a choice of data necessarily intro-
duces some bias in the fitting procedure. Our purpose in
the present Letter is to establish a versatile and unbiased
gap-estimation procedure free from an ambiguous
fitting.
In the meantime, the recently advanced technology has

allowed for quantum simulators that can realize ideal
quantum many-body systems [8]. In particular, the
quantum phonon effect of trapped ions has caught a
great deal of attention, which provides rich physics and
engineering, e.g., spin frustration [9], long-range spin
interaction [10], phonon superfluids [11], quantum gates
[12], etc. As an application of the present gap-estimation
method, we will elucidate the quantum phase transition of
the spin system coupled with quantum phonons, which is
called the spin-Peierls transition [13–19] and is accessible
in the ion system [20]. The level spectroscopy [3] from
Monte Carlo data is developed to overcome the difficulty
of the [Kosterlitz-Thouless (KT)] transition that makes
the conventional approaches ineffective. We establish that
the quantum phonon effect is essential to the spin-Peierls
system and its critical phenomena.
The spectral information of a quantum system described

by a Hamiltonian H is encoded in the imaginary time
(dynamical) correlation function:
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tr½eτHÔe−τHÔ†e−βH�

¼ 1

Z

X
l;l0

bl;l0e−τðEl−El0 Þe−βEl0

→
X
l≥1

ble−τðEl−E0Þ ðβ → ∞Þ; ð1Þ

where Ô is a chosen operator, Z is the partition function,
and β ¼ 1=T is the inverse temperature. Also, fjlig is the
complete orthogonal set of eigenstates, El is the associated
eigenenergy, bl;l0 ¼ jhl0jÔjlij2, and bl ¼ bl;0, where the
ground state is j0i, the first excited state is j1i, and so
are the higher excited states, respectively. We assume
Ôj0i ≠ 0, h0jÔj0i ¼ 0, and El > E0 (l ≥ 1); i.e., the
ground state is certainly excited by the operator, and the
gap is finite. The latter is the case for finite-size systems
even if the ground state is degenerated in the thermody-
namic limit.
Here, let us consider the moment of the imaginary time

correlation function [21]:
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where Δl ≡ Δl;0 and Δl;l0 ¼ El − El0 . The higher
moment will be dominated by the contribution from
the first excitation gap as Ik ∼ b1=Δkþ1

1 because
Δ1 < Δ2 < Δ3 < � � �. Then we can see a useful limit,
ðIk=IkþmÞ1=m → Δ1 ðk → ∞Þ∀m ∈ N. However, we can-
not use the moment directly in finite-temperature simu-
lations. It is because the correlation function is periodic for
bosons or antiperiodic for fermions, and the moment is not
well defined. Then the Fourier series can be exploited
instead. Let us think of the bosonic case because we will
investigate spin excitation. The Fourier component of the
correlation function at a Matsubara frequency ωj ¼ 2πj=β
ðj ∈ ZÞ is expressed as
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where gl;l0 ¼ bl;l0 ðe−βEl0 − e−βElÞ. In many simulations,
the so-called second moment [22] is used as the lowest-
order gap estimator:
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Interestingly, this estimator will be the ratio of the zeroth
and the second moment in the low-temperature limit. We
have to take notice of the systematic error carefully. The
error remains even in β → ∞ as

Δ̂ð1;βÞ
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→ 1þ 1
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which is typically a few percent of Δ1 [23]. This correction
hampers proper identification of the universality class in the
level spectroscopy analysis as we will see below.
Our main idea in the present Letter is to construct a

sequence of gap estimators that converges to a ratio of
higher-order moments in the low-temperature limit.
We will consider an estimator that has a correction
of O(ðΔ1=ΔlÞ2n−1). Let us expand Eq. (3) in powers
of (1=βΔl;l0 ) and make a linear combination of
Fourier components so that the lowest orders

cancel: ð−1ÞnPn
k¼0xn;k ~CðωkÞ¼

P
l;l0gl;l0ω

2n
1 Δ−ð2nþ1Þ

l;l0 =Zþ
Oðβ−ð2nþ2ÞΔ−ð2nþ3Þ

l;l0 Þ with coefficients xn;k. It will be
dominated by the smallest gap Δ1 in β → ∞ and
n → ∞. The coefficients xn;k satisfy the following equa-
tions:

P
n
k¼0 xn;kk

2m ¼ δm;n ð0 ≤ m ≤ nÞ, where δmn is the
Kronecker delta. They are exactly solved for by the
formula of the inverse of Vandermonde’s matrix

[24]. We can also show ð−1Þn−1Pn
k¼0 k
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the same xn;k. Then, a sequence of the higher-order
estimators is derived as

Δ̂ðn;βÞ ¼ ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
Xn
k¼0

k2xn;k ~CðωkÞ
	Xn

k¼0

xn;k ~CðωkÞ
s

ð6Þ

with xn;k ¼ 1=
Q

n
j¼0;j≠kðkþ jÞðk − jÞ. Importantly,
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p ðβ → ∞Þ, and the systematic error
is expressed as
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Note that Ik can be achieved only for even-numbered k
since ~CðωjÞ is real. As examples, ðx2;0; x2;1; x2;2Þ ¼
ð1
4
;− 1

3
; 1
12
Þ for n ¼ 2 [23] and ðx3;0; x3;1; x3;2; x3;3Þ ¼

ð− 1
36
; 1
24
;− 1

60
; 1
360

Þ for n ¼ 3. We have analytically written
down the bias of the gap estimator (6) and shown the
following remarkable property:

lim
n→∞

lim
β→∞

Δ̂ðn;βÞ ¼ lim
β→∞

lim
n→∞

Δ̂ðn;βÞ ¼ Δ1: ð8Þ

That is, these two limits are interchangeable (see the
Supplemental Material [25] for details). This important
property makes our gap estimation greatly robust. Note that
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the present approach works also in the stochastic series
expansion QMC method by the time generation [27].
Our generalized gap estimator is applicable to any

quantum system. As an example, we will show an appli-
cation with the level spectroscopy to the following one-
dimensional S ¼ 1=2 spin-Peierls model:

H ¼
X
r

�
1þ

ffiffiffiffiffiffi
ωλ

2

r
ðar þ a†rÞ

�
Srþ1 ⋅ Sr þ

X
r

ωa†rar; ð9Þ

where ω is a dispersionless phonon frequency, λ is a spin-
phonon coupling constant, Sr is the spin-

1
2
operator, and ar

and a†r are the annihilation and creation operator of the soft-
core bosons (phonons) at site r, respectively. This spin-
Peierls model has been investigated in the adiabatic limit
(ω → 0) [13], from the antiadiabatic limit (ω → ∞)
[14–18,28,29], and in its crossover [19]. The relevance
of the present model to real materials, such as CuGeO3

[30], has been discussed [31]. The model is expected to
exhibit a KT-type quantum phase transition between the
Tomonaga-Luttinger (TL) liquid phase and the dimer phase
at a finite spin-phonon coupling [15,19], which is absent
when either the spin or phonon is classically treated [13].
The realization of the quantum phase transition was
recently proposed in the trapped ion system [20].
It is difficult to precisely locate the transition point by the

conventional analyses. The huge Hilbert space with the
soft-core bosons hinders the sufficient-size calculation by
the diagonalization method [16]. The effective spin-model
approach by the perturbation [14] or the unitary trans-
formation [17] does not take into account all marginal
terms, e.g., the four-spin and six-spin interactions examined
in Ref. [32]. As for the DMRG method, it needs an
additional symmetry breaking term, which blurs the
phase-transition point, in the degenerated phase [28]. In
addition, the method has difficulty in precise calculation
of the relevant quantities, such as the central charge, around
an essential singularity [33]. Also, the previous QMC
approach [29] suffers from the exponential divergence of
the correlation length and the logarithmic correction around
the KT transition point. These difficulties mentioned above
can be overcome by employing the level spectroscopy
method [3,34] combined with our precise gap estimation.
In the TL liquid phase, both the triplet and singlet
excitations are gapless in the thermodynamic limit, but
the lowest excited state of finite-size systems is the triplet
because of the logarithmic correction [35]. In the dimer
phase, on the other hand, the first excited state is the singlet
for finite-size systems. It forms the degenerated ground
states eventually in the thermodynamic limit. Thus, the
excitation gaps of the triplet and singlet excitation intersect
at a spin-phonon coupling for finite-size systems. The
transition point can be efficiently extrapolated from the
gap-crossing points [3].

We used the continuous-time worldline representation
[27,36] and the worm (directed-loop) algorithm [37] in
the QMC method. Thanks to the exponential form of
the diagonal operators, our simulation is free from an
occupation-number cutoff of the soft-core bosons. The
Fourier components of the correlation function (3) are
directly calculated during the simulation. The worm-
scattering probability is optimized in rejection (bounce)
rate by breaking the detailed balance [38]. The boundary
condition was periodic in the space and time directions.
More than 225ð≃3.4 × 107Þ Monte Carlo samples were
taken in total after 218ð≃2.6 × 105Þ thermalization steps.
The error bar of the gap estimates is calculated by the
jackknife analysis [39].
First, the convergence of our gap estimate was tested for

L ¼ 4, ω ¼ 4, λ ¼ 1=2, where L is the system size. We set
ω here fairly larger than the actual spin gap because this
condition is satisfied for large systems in the relevant spin-
phonon coupling region. The boson occupation-number
cutoffDwas set to 4 only in this test for comparing with the
diagonalization result. Figure 1 shows the calculated triplet-
gap-estimation errors, where Ô ¼ P

rS
z
reiπr is used in the

dynamical correlation function. We compared the gap
estimators (6) to the previous approach [7] where the first
gap is estimated as −d logCðτÞ=dτ from the asymptotic
form (1). The derivative will show a plateau at the gap value
in an appropriate τ region. When βð¼ 1=TÞ is not large
enough, however, the plateau is indistinct. Then the
inflection point could be used, but it is hard to estimate
in practice (here we calculated it by longer QMC simulation
for comparison). As another practical and reasonable gap
estimation, we test a linear fit of logCðτÞ for τ1 ≤ τ ≤ τ2,
where we fix τ2 ¼ β=4. The inset of Fig. 1 shows the
feasible convergence of the gap estimate in n and the

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0  0.05  0.1  0.15  0.2  0.25  0.3

ε

T

n=1
n=2
n=3
n=∞

inflection
optimal fit-4

-2
 0
 2

 0  0.5  1
(τ2 - τ1)/τ2

1/n×10-2

FIG. 1 (color online). Triplet-gap-estimation (relative) error of
our estimators (6) (n ¼ 1; 2; 3;∞), the inflection-point value of
−d logCðτÞ=dτ, and the optimal fit (defined in the main text) for
the spin-Peierls model (9) with L ¼ 4, ω ¼ 4, λ ¼ 1=2, D ¼ 4,
which has Δ1 ≃ 1.111 388. The inset shows the n dependence of
the gap estimate (circles) for 1 ≤ n ≤ 10 and the τ1 dependence
of the logCðτÞ linear-fit result (diamonds) for τ1 ≤ τ ≤ τ2 with
τ2 ¼ β=4, calculated from 220ð∼106ÞMonte Carlo steps at β ¼ 6.
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difficulty of finding appropriate τ1 for the linear fit. The
function logCðτÞ is poorly fitted to a linear form at small
τ1, while it has larger statistical error at large τ1. Then the
gap error resulting from the linear regression takes a
minimum value at optimal τ�1, which we call “optimal
fit.” Even though it seems reasonable, the optimal fit
underestimates the gap at β ¼ 6; 8 and overestimates it
at β ¼ 12 as shown in the main panel of the figure.
Meanwhile, the second-moment estimator (n ¼ 1) has a
non-negligible bias even in T → 0 as expected from
Eq. (5). The estimate with large enough n (we call it the
n ¼ ∞ estimate hereafter), on the other hand, exponentially
converges to the exact value as the temperature decreases
[25]. The bias convergence is much faster than that of the
inflection point (one of the best estimates from the fitting
approach). Moreover, the higher-order estimator provides
a reliable error bar, while the optimal fit significantly
underestimates it [25]. Therefore, our approach is more
precise and straightforward than the fitting approach. In the
present study, we have used a simple recipe to optimize n
and β, minimizing both the systematic and the statistical
error [25].
The scaling of the gap-crossing point for the spin-Peierls

model between the triplet and singlet excitation is shown
in Fig. 2. For the singlet excitation gap, we used
Ô ¼ P

rSr ⋅ Srþ1eiπr. The bare excitation phonon gap
was set to ω ¼ 1=4 for the comparison with the previous
result [29]. The transition point λc ¼ 0.2245ð17Þ in the
thermodynamic limit was extrapolated without logarithmic
correction, which is much more precise than the previous
estimate, 0.176 < λc < 0.23 [29] in our notation. Also,
the spin susceptibility χs ¼

R β
0

P
rhSzrðτÞSz0ieiπrdτ could be

used for finding the transition point (Fig. 2). Nevertheless,

the gap-crossing point provides the much more reliable
extrapolation with the 1=L2 correction from irrelevant
fields [3], while the susceptibility is likely to have some
more complicated corrections.
We have also calculated the velocity, the central charge,

and the scaling dimensions at the transition point, fixing
λ ¼ 0.2245. The velocity v ¼ 1.485ð8Þ was calculated
from the scaling form vðLÞ ¼ Δk1=k1 ¼ vþ a=L2þ
b=L4 þ oð1=L4Þ, where Δk1 is the triplet gap at
k1 ¼ 2π=L, a and b are nonuniversal constants. The central
charge c ¼ 0.987ð13Þ was obtained from the finite-size
correction [35], E0ðLÞ¼E0−πvc=6Lþoð1=LÞ. The scal-
ing dimension corresponding to the triplet or singlet
excitation was calculated from the relation xðLÞ¼LΔπ=
2πv, where Δπ is the lowest (triplet or singlet) excitation
gap at k ¼ π. As shown in Fig. 3, the n ¼ ∞ estimates
converged to xS¼1 ¼ 0.502ð3Þ and xS¼0 ¼ 0.499ð3Þ with-
out logarithmic correction as expected only at the transition
point [3]. Hence, we conclude that this transition point is
described by the k ¼ 1 SU(2) Wess-Zumino-Witten model
[40] with c ¼ 1 and x ¼ 1=2. On the other hand, the
second-moment estimates (n ¼ 1) failed to approach 1=2
as seen in Fig. 3. This identification of the critical theory
clearly demonstrates the importance of the higher-order
estimator. The present study nontrivially clarified that the
critical theory at the transition point of the spin-Peierls
model with a finite phonon frequency coincides with that in
the antiadiabatic limit (ω → ∞) where the effective spin
model is the frustrated J1-J2 chain [3]. Our result strongly
indicates that the quantum phonon effect is relevant to the
spin-Peierls system in the sense that it necessarily triggers
the universal KT phase transition.
In conclusion, we have presented the generalized

moment method for the gap estimation. The advantages
of our method over the previous approaches are as follows:
the unbiased estimation [Eq. (8)], the absence of ambigu-
ous procedure, the faster convergence with respect to the
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FIG. 2 (color online). Convergence of the gap-crossing point
(circles) between the triplet and the singlet excitation for
L ¼ 36; 40; 48; 64, together with the crossing point of the spin
susceptibility (diamonds) between χsðLÞ=L and χsðL=2Þ=ðL=2Þ.
The spin-phonon coupling dependence of the gaps is shown in the
inset for each L. The dashed line is the fitting curve with λcð∞Þ
fixed, which results in large χ2=d:o:f: ≈ 5.0. The statistical errors
are smaller than the symbol size.
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FIG. 3 (color online). System-size dependence of the scaling
dimension corresponding to the triplet or the singlet excitation at
the transition point (λ ¼ 0.2245), calculated from the second-
moment (n ¼ 1) or the n ¼ ∞ gap estimate.

PRL 115, 080601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

21 AUGUST 2015

080601-4



temperature, and the reliable error-bar estimation. We
emphasize that our approach is generally applicable to
any quantum system. The QMC level spectroscopy was
demonstrated, for the first time, for the KT transition in the
spin-Peierls model. This spectral analysis will likely work
in various systems including most conformal phases. We
elucidated that the quantum phonon effect is relevant to the
critical theory of the spin-phonon system, which is
expected to be universal in many kinds of one-dimensional
systems, e.g., (spinless) fermion-phonon systems, by virtue
of the well-established transformations. The clarified quan-
tum phase transition and the criticality would be directly
observed in the quantum simulator [20].
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