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Dynamic nuclear polarization (DNP) is to date the most effective technique to increase the nuclear
polarization opening disruptive perspectives for medical applications. In a DNP setting, the interacting spin
system is quasi-isolated and brought out of equilibrium by microwave irradiation. Here we show that the
resulting stationary state strongly depends on the ergodicity properties of the spin many-body eigenstates.
In particular, the dipolar interactions compete with the disorder induced by local magnetic fields resulting
in two distinct dynamical phases: while for weak interaction, only a small enhancement of polarization is
observed, for strong interactions the spins collectively equilibrate to an extremely low effective temperature
that boosts DNP efficiency. We argue that these two phases are intimately related to the problem of
thermalization in closed quantum systems where a many-body localization transition can occur varying
the strength of the interactions.
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Introduction.—Formulating statistical mechanics for an
isolated many-body system requires the tacit assumption of
ergodicity. Only recently, however, the eigenstate thermal-
ization hypothesis (ETH) [1,2] promoted this concept to a
testable condition at the quantum level, allowing the
identification of situations where ergodicity might even
be broken once disorder combines with quantum interfer-
ence [3,4]. It is natural to ask, then, whether ETH
influences also the stationary regimes where energy is
constantly injected and dissipated, leading again to an
emergent simple description. Dynamic nuclear polarization
(DNP), the most effective technique to increase the nuclear
polarization, is a paradigmatic out-of-equilibrium protocol
to test these ideas. In a DNP procedure [5], the compound is
doped with radicals (i.e., molecules with unpaired elec-
trons), exposed to a strong magnetic field at low temper-
ature β−1 and then irradiated with microwaves (see Fig. 1
for details). At thermal equilibrium, the unpaired electrons
are much more polarized than nuclear spins because the
electron Zeeman gap is orders of magnitude larger than the
nuclear one. When the microwaves are on, at a frequency
close to the electron Zeeman gap, the spin system of
interacting electrons and nuclei organizes in an out-
of-equilibrium steady state with a huge nuclear polariza-
tion. The hyperpolarized sample can then be dissolved
at room temperature [6], injected in patients, and used as
a metabolic tracer [7]. However, our understanding of
the physical mechanisms that trigger hyperpolarization
is still poor. A striking experimental evidence is the
thermal mixing of the ensemble of different nuclear spins
(13C, 15N, 89Y, …) [8,9]: their enhanced polarizations are
well described by an equilibriumlike polarization, Pn ¼
tanhðβsℏωn=2Þ (see Fig. 1, right). While the Zeeman gap
ωn depends on the nuclear species, the spin temperature β−1s

is a unique parameter, possibly one thousand times smaller
than β−1, the one of the bath [10].
But how can a quantum system appear thermal and

colder when irradiated by microwaves? In which way can
the spin temperature be controlled acting on the exper-
imental parameters?
In this Letter we show that the spin temperature concept

is directly connected to quantum ergodicity and ETH.
While for classical physics thermalization has its origin
at the onset of chaotic dynamics, quantum ergodicity
requires the ETH, a thermal behavior at the level of single
eigenfunctions [1,11]. The realm of ETH is normally
restricted to quench protocols in cold atom experiments,

FIG. 1 (color online). A solid material containing nuclear spins
(e.g., 13C, 15N) and doped with molecules with unpaired electrons
(left). At 1.2 K and 3.35 T the equilibrium polarization of the
electron spins is very high, (94%), while nuclear spins are very
little polarized, less than 1%. Under microwave irradiation the
spin system evolves towards a new steady state characterized
by a single spin temperature β−1s ∼ 1 mK (right). In this work,
we analyze exclusively the electron spins and show that an
out-of-equilibrium spin temperature results from the interplay of
disorder and interaction.
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where any exchange of energy with the environment is
under control. Our work shows that ETH may impose a
thermal behavior to the stationary state of open quantum
systems, giving a practical and experimental relevance to
the fundamental problem of quantum thermalization [3,4].
The microscopic model.—The traditional description of

DNP in the thermal mixing regime relies on the phenom-
enological assumption that the electron spins cool down
once irradiated and act as a reservoir for all nuclear species.
Here, we focus only on the electron spins and on the
origin of the spin temperature in their stationary state.
In the electron spin Hamintonian, the presence of g-factor
anisotropy induces a spread of the electron Zeeman gap:

Ĥ ¼ ℏ
XN

i¼1

ðωe þ ΔiÞŜiz þ Ĥdip; ð1Þ

where N is the number of electrons and ωe is the external
magnetic field. The random fields Δi are quenched at
low temperature and distributed according to the density

fðΔÞ, with mean Δi ¼ 0 and variance Δ2
i ¼ Δω2

e. The term
Ĥdip contains the interactions between spins due to the
dipolar coupling. Experiments can access the product
fðΔÞPeðωÞ, dubbed EPR spectrum, where PeðωÞ is the
polarization of an electron with Zeeman gap ω ¼ ωe þ Δi.
At equilibrium with the environment (sketched in blue
in Fig. 2), PeðωÞ≃ −1. The microwave irradiations at
frequency ωMW and intensity ω1 take the form ĤMW ¼
2ω1Ŝx cosðωMWtÞ, with Ŝx the total spin operator along
the x component. In the absence of dipolar interactions,
the Bloch equations predict that the electrons with a
resonating Zeeman gap are saturated, Peðω ∼ ωMWÞ ∼ 0,
while the others remain highly polarized. This corresponds
to the hole burning shape of the EPR spectrum, shown in
Fig. 2(a). On the contrary, according to the thermal mixing
picture, the presence of dipolar interactions induces a
collective reorganization of the electron polarization profile
PeðωÞ, that shows an equilibriumlike shape even under
microwave irradiation

PeðωÞ ¼ − tanh

�
ℏβs
2

ðω − ω0Þ
�

ð2Þ

with ω0 ≃ ωMW. The ansatz of Eq. (2) lacks a microscopic
derivation. Moreover, recent ab initio models [12] have
only observed a hole burning shape, with a weak
polarization enhancement triggered by local hybridizations
[13–15]. Here, we take

Ĥdip ¼
X

i<j

AijðŜiþŜi− þ c:c:Þ: ð3Þ

where the Ai;j are the dipolar couplings. Because of the
glassiness ofDNP samples, the distance between electrons is
random and, thus, for simplicity the coupling Aij are taken,
within a mean field approximation, as Gaussian random

variables with zero mean and variance U2=N. We are
interested in the strongly correlated regime where disorder
and interaction compete, i.e., U ≃ Δωe. Our conclusions
should not depend on the specific model and, here, we
choose a uniform distribution of local magnetic fields by
taking equally spaced Δi ¼ Δωeð2i − N − 1=2NÞ, with
randomness only affecting the dipolar couplings.
The master equation.—A key experimental observation

[16,17] is that the spin system is quasi-isolated with a
dephasing time T2, very short compared to the time scales
of microwave dynamics and to the relaxation time T1, with
the thermal bath [18]. Therefore, any initial density matrix
ρ is quickly reduced by dephasing to a diagonal form in the
basis of eigenstates of Ĥ. In practice [19], the Lindblad
equation _ρ ¼ Lρ used to describe the dynamics of the open
system reduces to a master equation for the time evolu-
tion of the 2N occupation probabilities, ρnn with rates
Wn→n0 ¼ hðΔϵn;n0 ÞWbath

n;n0 þWMW
n;n0 , where

Wbath
n;n0 ¼

2

T1

XN

j¼1

X

α¼x;y;z

jhnjŜjαjn0ij2; ð4aÞ

WMW
n;n0 ¼

4ω2
1T2jhnjŜxjn0ij2

1þ T2
2ðjΔϵnn0 j − ωMWÞ2

: ð4bÞ

Here the index n labels eigenstates of energy ϵn with
Δϵnn0 ¼ ϵn − ϵn0 . The function hðxÞ ¼ eβx=ð1þ eβxÞ

FIG. 2 (color online). EPR spectrum. Equilibrium (blue) versus
MW irradiated (yellow) profile. Under irradiation two possible
profiles are expected: (a) The hole burning shape, characteristic
of the noninteracting case; (b) the hyperbolic tangent shape
characterized by a very low effective temperature βs that cools
down the nuclear spins.
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assures the convergence to Gibbs equilibrium when the
microwaves are off and the rate Wbath

n;n0 in Eq. (4a) comes
from single spin flip transitions on a time scale T1.
Equation (4b) describes transitions induced by the micro-
wave field. In Fig. 3 we present the stationary value of
the polarization Peðω ¼ ωe þ ΔiÞ≡ 2Tr½Ŝizρ∞�, computed
from the stationary occupation probabilities which solve
Lρ∞ ¼ 0. Note that this requires the full diagonalization of
Ĥ, strongly constraining the possible system sizes.
Two possible behaviors are observed: For weak inter-

actions, the hole burning shape, already observed in
Refs. [13–15], is recovered. Instead, in the presence of
strong dipolar interactions, we show that all electrons
rearrange according to the spin temperature profile of

Eq. (2). Remarkably, in the wing closer to ωMW, electron
polarization can even invert its sign.
The origin of these two dynamical regimes can be

understood in relation with the quantum thermalization
of the electron spins. In general, in closed quantum
systems, an arbitrary initial state converges to a time-
independent density matrix because of dephasing: in the
basis of eigenstates, off-diagonal elements are suppressed
while the occupation probabilities on the diagonal remain
constant. But then, how could thermodynamics emerge if
the initial occupancies are conserved? In Fig. 4 (left) we
report the most probable value of the local polarization
for the eigenstates at a given energy. In presence of
weak interaction (U ¼ 2 MHz) the polarization fluctuates
between the extremal values �1 showing that the exact
eigenstates are almost factorized on local spins. When the
interaction is increased, eigenstates are strongly entangled
and the local polarization is close to zero, its micro-
canonical average. As predicted by ETH, each eigenstate
is independently thermal and so the paradox of quantum
thermalization is solved, as the memory of the initial
condition fades out while entanglement grows through
dephasing [24]. Instead, in the weakly interacting regime,
for initial states close enough to exact eigenstates, a finite
fraction of the polarization is doomed to survive [25–27].
In absence of disorder, the spin temperature is well

defined but very high [28]; varying the ratio U=Δωe, the
spin temperature decreases up to a point where the system
approaches the many-body localization (MBL), a dynami-
cal transition between an ETH and a non-ergodic phase
[3,4,29], surviving even in the presence of microwaves
[30]. In Fig. 4 (middle) we present a standard indicator
for the transition: the variation of the local polarization
between pairs of adjacent eigenstates versus the size of the
system [4]. In the ETH phase, this quantity converges
exponentially to zero, indicating that all the fluctuations are

FIG. 3 (color online). Electron polarization under MW irradi-
ation with ωMW ¼ 93.8775 GHz, for the model of Eq. (1) with
N ¼ 12 spins. For strong dipolar interactions (circles and
diamonds) the spin temperature is well defined. The fit according
to Eq. (2) (red and green lines) gives β−1s ¼ 3.7 mK for
U ¼ 15 MHz and β−1s ¼ 7.4 mK for U ¼ 45 MHz. For weak
interactionsU ¼ 2 MHz (square) a simple broadening of the hole
burning noninteracting profile (dashed blue line) given in Eq. (8)
of Ref. [19].

FIG. 4 (color online). Left: Density plot of the distribution of diagonal elements hnjŜizjni in the sector of vanishing total polarization.
Colored regions represent, for each energy window ðϵ; ϵþ ΔϵÞ, the smallest area containing half probability (U ¼ 2 MHz in blue,
U ¼ 15 MHz in red, U ¼ 45 MHz in green). Middle: Logarithm of the variation of the local polarization between pairs of adjacent
eigenstates of Eq. (1) versus N. In the ergodic phase, this indicator vanishes exponentially in N. In the localized phase, it saturates to a
finite value. Right: EPR spectrum for the toy model of Eq. (5) with 7 packets. The equilibrium profile is in blue. The yellow histograms
show the stationary profile under MW irradiation with ωMW ¼ 93.8775 GHz, N ¼ 64 spins and fp ¼ Np=N. The solid line is obtained
from the ansatz of Eq. (2) imposing the condition (6).
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more and more suppressed. On the contrary, in the localized
phase, it saturates to a finite value, since fluctuations remain
present even in the thermodynamic limit.
Our results indicate that whenever the interaction with

the environment is weak but not negligible, the dynamics
reduces to quantum jumps between exact eigenstates of the
electron system. Then, if ETH holds, the stationary state
necessarily looks thermal, with few global parameters
(e.g., the spin temperature), fixed relaxation, and micro-
wave irradiation. Instead, in the localized phase, only a
weak DNP enhancement, triggered by few-body processes,
can be observed.
Spin temperature behavior.—It is important now to

estimate the value of the spin temperature in the ETH
phase. We first study a simplified model where the
electrons in the EPR spectrum are assumed to be grouped
into well separated macroscopic packets:

Ĥtoy ¼ ℏ
X

p

ðωe þ ΔpÞ
XNp

k¼1

Ŝkz þ ηĤint; ð5Þ

where
P

pNpΔp ¼ 0 and Np is the number of electrons in
the packet p. For η ¼ 0 the spectrum of the Hamiltonian is
composed by sectors of defined total magnetization and
energy. The interactions are encoded in Hint, which is
chosen as a Gaussian random matrix inside each sector.
When η is small—but still prevailing over the coupling with
the bath—Hint lifts the degeneracies in each sector selecting
an ergodic basis in which the long-time density matrix is
diagonal [31]. This model allows avoiding the numerical
diagonalization, since statistical properties of the eigen-
states are known. Moreover, the rates Wn→n0 in Eq. (4)
depend on n; n0 only via the matrix elements of local spin
operators, jhnjŜixjn0ij2. Since the eigenvectors are perfectly
ergodic in each sector, this quantity is actually determined
by the pair of sectors containing, respectively, n; n0, with
weak statistical fluctuations [19]. These simplifications
largely reduce the exponential difficulty of the problem.
In Fig. 4 (right) we show that the stationary EPR spectrum
for N ¼ 64 spins perfectly agrees with the thermal ansatz
in Eq. (2). Moreover, βs and ω0 in Eq. (2) can be fixed,
imposing that the energy and total magnetization become
stationary for large times, which for the toy model leads
to [19]

2T2ω
2
1PeðωMWÞ þ

X

p

Np
PeðωpÞ − P0

2T1

¼ 0; ð6aÞ

2T2ω
2
1Δ0PeðωMWÞ þ

X

p

NpΔp
PeðωpÞ − P0

2T1

¼ 0; ð6bÞ

where ωp ¼ ωe þ Δp, P0 ¼ − tanhðβωe=2Þ is the equilib-
rium polarization, Δ0 ¼ ωe − ωMW and we assumed that
the microwaves only act on the resonating packet. Note

that, for conserved quantities of Eq. (5), as the energy and
the total magnetization, the balance of the flows has a
simple form since it reduces to the exchanges with the bath
and microwaves.
These results retrace the traditional prediction obtained

within the phenomenological ansatz of Eq. (2) proposed
by Borghini [32]. Here, Eq. (2) naturally emerges once
the strong suppression of fluctuations, characteristic of
the ETH phase, has been assumed. However, the qualitative
approach to hyperpolarization provided by this toy model
largely underestimate the spin temperature value and
hides its dependence from the microscopical parameters
(U; T1;…) [33].
A richer scenario emerges instead from the exact

diagonalization of Eq. (1), where a stronger hyperpolariza-
tion enhancement is observed approaching the MBL
transition (see Fig. 3) and can be even amplified decreasing
the relaxation time T1 (see Fig. 5). Both effects agree with
two well-known experiments, which fall beyond the appli-
cability of the Borghini model [36]. The first showed
that the enhancement occurs only at relatively low radical
concentrations [16], and therefore at weaker dipolar inter-
actions. In the second, the addition of gadolinium com-
plexes was used to induce a reduction of the relaxation time
T1 [34,35]. This, in turn, improved the signal enhancement
and gadolinium is now commonly exploited in standard
protocols for DNP sample preparation.
Concluding remarks.—We presented a simple model for

the study of DNP, providing a realistic dependence on the
tunable parameters. The concept of out-of-equilibrium spin
temperature emerges naturally as a macroscopic manifes-
tation of the ETH for the electron spin Hamiltonian.
Our study candidates DNP as a good ground for the

direct observation of the MBL transition and its dynamical
phase diagram. Two key advantages play in favor of this
experimental setting. The first is that the two relevant
control parameters for the transition are tunable:U depends
on the radical concentration and Δωe is proportional to the
external magnetic field. The second is that the system does

FIG. 5 (color online). T1 shortening effect. The spin temper-
ature βs, obtained from the fit of the electron polarizations (see
Fig. 3), is shown versus ωMW with U ¼ 15 MHz and different
values of the relaxation time T1: the spin temperature is smaller
when relaxation is faster, consistently with the observed increase
in the hyperpolarization efficiency [34,35].
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not require being isolated during the characteristic obser-
vation time, but, rather, that the relaxation is sufficiently
slow to allow the pure quantum behavior to settle. Note
that, in the past, the spin-temperature polarization profile
was already experimentally observed in Ref. [37] for
increasingly g factors anisotropy, up to a critical value
where the hole-burning profile popped out. The possibility
of performing experiments precisely aimed at the obser-
vation of the elusive critical regime of the MBL is therefore
concrete and promising. Moreover, the tunability of exter-
nal parameters may allow the exploration of the phase
diagram, even in regimes where the physics of spin glasses
becomes relevant [38,39].
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