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Understanding the dynamics of polymeric liquids has great importance in the design and processing of
soft materials. While slow flow dynamics is now resolved, fast flow dynamics is still unsolved, especially
due to the lack of experimental evidence. We here manipulate a poly(methyl methacrylate) solution into
exhibiting the same flow behavior as a polystyrene melt. Strikingly similar responses of the fluids are seen
both in slow and very fast flow. With this discovery we show that dynamics in polymeric liquids can be
generalized and captured in one single polymer physics model.
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Universality of molecular dynamics is a fundamental
assumption in polymer physics [1,2]. It is the underlying
framework of the most successful theoretical model, known
as the tube model [3,4]. The significance of this assumption
is that model systems at room temperature, i.e., polymer
solutions, could be used to represent polymer melts at
elevated temperatures. While the existence of a room
temperature model material would be highly desirable,
unfortunately a polymer solution with the same fast flow
dynamics (nonlinear behavior) as a polymer melt has not
yet been observed. It was recently shown that two linear
polymeric systems with the same number of entanglements
exhibit identical slow flow dynamics (linear behavior), but
strikingly different nonlinear behavior [5]. The lack of
evidence of universality in strongly nonlinear conditions
leaves one wondering whether such an assumption is valid.
For two polymeric systems to have identical flow

dynamics, researchers have hypothesized that they must
have the same following characteristics: (i) the same
number of entanglements, (ii) the same degree of flexibility
(number of Kuhn segments per entanglement), and, very
recently, (iii) the same potential for monomeric friction
reduction [6]. Whereas systems with identical character-
istics (i) and (ii) have been studied [7,8], systems with the
same characteristics (i)–(iii) have not, the reason being that
usually characteristic (ii) can never be adjusted without
compromising characteristic (iii).
This study observes universal behavior between a

polymer solution and a polymer melt with the same three
characteristics, confirming the assumption of universality
in polymer physics for both linear and nonlinear dynamics.
The following is a brief description of how to manipulate
all three characteristics independently.
Adjustment of the three characteristics (i)–(iii) is based

on the tube model depicted in Fig. 1. Here, a polymer in
an entangled melt is reduced to a primitive chain with
limited ability to move in its transverse direction due to

entanglements with neighboring chains [Fig. 1(a)]. Effec-
tively, the entanglements can be regarded as constituents of
a tube surrounding the test chain [Fig. 1(b)]. The primitive
chain itself can be described by a random walk of Kuhn
steps [Fig. 1(c)].
The number of entanglements per chain Z, characteristic

(i), is solely responsible for the linear response of a
polymeric liquid [5]. It is given by the ratio of Kuhn steps
in the entire chain N over Kuhn steps per entanglement
segment Ne, or analogously on a molar mass basis

FIG. 1 (color online). Sketch of the tube analogy for entangled
polymeric liquids. (a) A primitive entangled polymer chain in a
melt. The polymer test chain is well entangled with neighboring
polymer chains. (b) The simplified picture of the polymer melt
applied in the original tube model. Here, the entanglements
constitute a tube with a primitive path. (c) Enlargement of one
entanglement segment showing how the test chain is reduced to a
random distribution of connected Kuhn steps.
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Z ¼ N
Ne

¼ Mw

Me
: ð1Þ

Here, Mw and Me are the molar masses of the entire
chain and one entanglement segment, respectively. As
Me is independent of polymer molar mass, the number
of entanglements can be adjusted from the molar mass of
the polymer as it scales linearly with Mw. The addition
of a solvent to a polymer melt increases Me. However, a
proportional change inMw may be used to keep the number
of entanglements unchanged.
The number of Kuhn steps per entanglement Ne,

characteristic (ii), becomes important in the nonlinear
regime [9]. Ne describes the rigidity of an entanglement
segment and is used in several nonlinear models [10–15].
For an undiluted polymer, Ne is determined by its chem-
istry alone. Adding a solvent to an entangled polymeric
liquid will increase the spacing between entanglements,
thus increasing the number of Kuhn steps per entanglement
segment. In a solution with a given polymer concentration
ϕ the number of Kuhn steps between entanglements NeðϕÞ
scales as

NeðϕÞ ¼ Neð1Þϕ−α: ð2Þ
Here, Neð1Þ is the number of Kuhn steps per entangle-

ment segment for the undiluted system and α is the dilution
exponent with a value between 1 and 1.3, depending on
concentration [16]. It is realized that dilution increases Ne;
hence, the only way to match Ne between a polymer melt
and a solution is to have two different chemistries. Thus, by
allowing a change in chemistry and molecular weight, both
Ne and Z can be adjusted independently.
As previously mentioned, no two polymer liquids having

identical characteristics (i) and (ii) (i.e., the same Ne and Z)
have shown the same nonlinear behavior. In fact, evidence
of the contrary is available [7]. Hence, experimental
evidence suggests that Z and Ne alone cannot account
for the nonlinear behavior of polymeric liquids. This is why
the third concept, monomeric friction reduction, proposed
by Ianniruberto and co-workers is important [6].
Friction reduction, characteristic (iii), encountered in

nonlinear flows, arises from the anisotropic environment
locally around the polymer chain [6,17]. In the case of
diluted polymers, traditional (small) solvent molecules
remain isotropic even at large deformations, inhibiting
any flow-induced monomeric friction reduction. The very
nature of friction reduction seemingly disrupts any pos-
sibility of ever obtaining a solution that behaves as a melt,
unless the solvent molecule possesses the same potential
for friction reduction as the polymer itself, i.e., such as in
the case of oligomers.
Using oligomers (polymers with less than 100 repeating

units) as the solvent is a potential method of matching the
friction reduction between the polymer and the solvent.
Molecular dynamics simulations of polystyrene oligomers

have shown that the degree of friction reduction in fast
shear flows indeed increases with increasing molar mass of
the oligomers [6]. Hence, we hypothesize that the friction
reduction of a polymer solution increases as the number
of oligomer Kuhn steps Ns increases. Yet, in order not to
create a binary blend of polymers where Ne is fixed, Ns
must be smaller than Ne to avoid forming any additional
entanglements, i.e., Ns=Ne < 1. On the contrary Ns=Ne
should be as large as possible in order to have a similar
potential for anisotropy and hence friction reduction as
a melt.
The solutions investigated in this study are pre-

pared from poly(methyl methacrylate) (PMMA) with
Mw ¼ 86 kg=mol (PMMA-86k) and Mw ¼ 270 kg=mol
(PMMA-270k). From linear characterization, Z is esti-
mated to be 14 for PMMA-86k and 52 for PMMA-270k,
see the Supplemental Material [18] for details. Ne is
estimated to be 10 and 9, respectively [19]. Oligo(methyl
methacrylates) of various lengths are investigated as the
solvent for the samples. Among the various options (see
the Supplemental Material [18]), an oligomer of Mw ¼
3.5 kg=mol (referred to as o-4k) is found to be the most
optimal solvent for this study, i.e., the longest solvent
molecule that does not form entanglements.
The reference materials that we aim to mimic using

PMMA are two polystyrene (PS) melts. They have pre-
viously been characterized by Nielsen et al. and Huang
et al. [5,21], one with Mw equal to 103 kg=mol the other
with 285 kg=mol, referred to as PS-100k and PS-285k,
respectively. PS is known to have Me ¼ 13.3 kg=mol and
analogously Ne ¼ 22 [5,22]. Characteristics of these sam-
ples related to the tube model are given in Table I.
Diluting PMMA-86k and PMMA-270k in o-4k yields

the solutions PMMA-86k=o-4k and PMMA-270k=o-4k,
respectively, with the characteristics given in Table I.
Values of Z and Ne for the PMMA solutions and the
reference PS melts are in good agreement (within �10%).
Furthermore, we observe that Ns=Ne for the PMMA
solutions are close to 1 without exceeding it, as required.
The linear and nonlinear response of the PMMA

solutions and PS melts are shown in Figs. 2(a) and 2(b),
respectively. The linear response is obtained from a small
amplitude oscillatory shear (SAOS) flow whereas nonlinear
characterization is obtained from uniaxial extension.

TABLE I. Material characteristics of PS melts and PMMA
solutions.

Sample ϕ α Z Ne NS=Ne

PS-285k 1.00 � � � 21 22 � � �
PMMA-270k=o-4k 0.45 1.17 20 23 0.67
PS-100k 1.00 � � � 7.7 22 � � �
PMMA-86k=o-4k 0.51 1.08 7.0 20 0.59
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The linear response [Fig. 2(a)] is expressed in terms
of the dynamic moduli G0 and G00 versus frequency ω,
representing the elastic and viscous response of the fluid,
respectively. The solvent is expected to contribute an
amount to G00 ¼ ð1 − ϕÞηsω, where ηs ¼ 410 Pa s is the
solvent viscosity. Hence, the solvent only contributes a
negligible amount to the moduli and the solvent does not
affect the universality argument. The dynamic moduli have
been normalized by the characteristic plateau modulus
G0

N , a hypothetical value of the plateau in G0 for
ω → ∞. Frequency is normalized by the characteristic
time τe related to the second crossover of the dynamic
moduli. The parameters G0

N , τe, and Z may be extracted
frommodels such as the Baumgaertel-Schausberger-Winter
spectrum or the Likhtman-Mcleish model (see the
Supplemental Material [18]) [23,24].
From the linear characterization in Fig. 2(a), it is seen

how samples with the same Z overlap, as expected. Tube
stretch and friction reduction are inactive under these
conditions and, consequently, Ne as well as the type of
solvent are irrelevant for the observed similarity.
The most severe nonlinear behavior of polymers is

encountered in extension, including uniaxial extension.
This study employs a filament stretching rheometer to
measure the fast flow dynamics of melts and solutions [25].
It is equipped with an active control scheme [26] to avoid
filament instability as described by Fielding [27]. The
instrument measures the stress in the polymer sample by
monitoring the axial force and the midfilament diameter.
This study performs extensional measurements at a con-
trolled rate, the Hencky strain rate _ε0. The resulting

response of the polymeric liquids is shown in Fig. 2(b).
It displays the transient behavior in terms of the extensional
stress growth coefficient, given by

ηþE ðtÞ ¼
σzz − σrr

_ε0
: ð3Þ

Here, σzz and σrr represent the axial and radial compo-
nent of the stress tensor, respectively. Normalization of ηþE
is based on a characteristic viscosity given by the plateau
modulus G0

N and a characteristic relaxation time scale for
the whole polymer chain τR ¼ τeZ2 (see the Supple-
mental Material [18] for more details). In addition, the
linear prediction obtained from fitting the Baumgaertel-
Schausberger-Winter spectrum to the SAOS data is shown
as solid and dashed lines in Fig. 2(b).
Each upturn represents a single filament stretch experi-

ment, performed at a given constant _ε0. To enable com-
parison, strain rates are given in terms of nondimensional
Weissenberg numbers (WiR ¼ _ε0τR indicated at each
experiment) instead of the absolute value _ε0. WiR compares
the Rouse relaxation time of the chain contour length τR to
the imposed rate of deformation _ε0 [28]. As long asWiR<1
the number of Kuhn lengths between entanglements Ne is
unimportant. However, for WiR > 1 motions on the scale
of a Kuhn length occur, and therefore Ne becomes an
important parameter. In a similar way friction reduction
is only activated in a highly anisotropic environment
experienced at WiR > 1, where chains are aligned and
stretched [29].

FIG. 2 (color online). Nondimensional mechanical response of PS melts and PMMA solutions. Samples have a similar number of
Kuhn steps between entanglementsNe, degree of friction reduction, and pairwise matching number of entanglements Z. Closed symbols
indicate samples with Z ≈ 20, open symbols samples with Z ≈ 7. Black indicates reference data for pure polystyrene melts [5,21].
(a) Linear response from small amplitude oscillatory shear, expressed in terms of normalized dynamic moduli versus normalized
frequency. (b) Response of melts and solutions in extensional flow at various nondimensional rates of deformation (WiR). Results are
expressed in terms of the normalized stress growth coefficient. Samples with Z ≈ 7 have been shifted horizontally one order of
magnitude higher for clarity. Solid and dashed lines are linear predictions obtained from fits of the SAOS data.
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In Fig. 2(b) good agreement with the linear prediction is
observed for WiR ≪ 1, as expected. At larger WiR a clear
deviation from linear behavior is observed. This upward
deviation of ηþE from the linear prediction is known as strain
hardening. The most important characteristic is that the
transient behavior of PS melts and PMMA solutions
stretched at the same WiR is the same for all time, for all
experiments. This similarity between melt and solution
behavior has, to our knowledge, never been observed before.
A plateau region is observed for ηþE , towards the end of

each stretch experiment in Fig. 2(b). Here, the polymeric
liquids reach a steady state extensional viscosity ηE. These
values are plotted against WiR in Fig. 3. In the linear
regime, extensional viscosity ηE is often expressed in terms
of the zero shear rate viscosity η0, where ηE ¼ 3η0.
Theoretically, ηE=3η0 → 1 as WiR → 0 for linear polymeric
liquids, as is indeed the case here.
The PMMA solutions prepared in this work exhibit an

initial increase in ηE, followed by a steady decrease. The
increase is more pronounced for a low number of entan-
glements both for the solutions and the melts. Furthermore,
for liquids with a sufficiently high number of entangle-
ments, ηE follows the power law ηE ∝ ðWiRÞ−0.5, previ-
ously only observed for polymer melts [30]. Overall, the
PMMA solutions and PS melts with the same three
characteristics behave identically.
The ability of the oligomer to induce friction reduction

can be explained from the concept of average orientation
introduced by Yaoita et al. [17]. Assuming an isotropic
solvent, they model friction reduction by introducing an
average orientation tensor S̄ ¼ ϕSp with Sp being the
polymer orientation tensor. The greater the average ori-
entation, the greater the friction reduction. It is seen that the
average orientation clearly is reduced as the concentration
of polymer ϕ is reduced, and consequently the degree of
friction is reduced.

In this work, the o-4k solvent is orientable, i.e., non-
isotropic. Intuitively, there must be an additional contribu-
tion to the average orientation from the solvent such that
S̄ ¼ ϕSp þ ð1 − ϕÞSs where Ss is the orientation tensor of
the solvent. Therefore, the average orientation of the
solution is higher than if a molecular (isotropic) solvent
were used, promoting friction reduction as expected in a
melt. Note that in the limiting case where Ss ≈ Sp there
should be little difference between a melt and a solution.
To demonstrate this concept further, the effect of using a

solvent molecule with Mw ¼ 2.1 kg=mol (o-2k), i.e., half
the size of the utilized o-4k, is seen in Fig. 4. It is seen
that the steady state viscosity of the PMMA solution
containing the o-2k solvent (PMMA-270k=o-2k) exceeds
that of the two others, PMMA-270k=o-4k and PS-285k.
This supports the hypothesis that the o-2k solvent contrib-
utes less to the average orientation than the o-4k, resulting
in less friction reduction.
To conclude, we have shown experimentally that uni-

versality of polymer dynamics can be extended from the
linear regime deep into the nonlinear regime. The concept
of monomeric friction reduction seems valid and perfectly
explains the previously unsolved discrepancy between the
response of polymer melts and solutions in fast flows where
both Z and Ne are the same. As a result the number of
characteristics needed to fully describe flows of polymeric
liquids across all deformation regimes can be narrowed
down to the three presented here.
These results have both positive and negative implica-

tions, the positive being that we now have a method
of systematically designing model materials for linear
entangled polymers and most likely other macromolecules
and polymers with other types of architectures due to the
proof of universality [31]. Unfortunately, the influence of
friction reduction means that diluting polymers with con-
ventional molecular solvents can never result in a proper
model material for a polymeric melt since a disparity in

FIG. 3 (color online). Normalized steady state viscosity as a
function of the Weissenberg number. Panel (a) compares samples
with Z ≈ 20. Panel (b) compares samples with Z ≈ 7. Black
indicates reference data [5,21].

FIG. 4 (color online). Normalized stress growth coefficient
(symbols) for three different polymers extended at a Weissenberg
number WiR ¼ 6.7. Solid lines indicate the predicted linear
response. Black indicates reference data [5].
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friction reduction between the polymer and solvent
increases the strain hardening behavior. Hence, the use
of polymeric solutions as model materials for polymeric
melts seems very limited. The important take home
message is that this data set offers a complete experimental
framework for which to test all future models, which
evidently must include physics relating to the number of
entanglements, the flexibility of the chain, and the mono-
meric friction reduction of both the polymer and solvent
when applicable.
In closing we remark that universality has been dem-

onstrated on the macroscopically observable stress. It is
interesting to consider whether this reflects universality on
the molecular level, which in the future could be observed
by techniques such as dielectric spectroscopy or neutron
scattering [32,33].
Please contactOleHassager to gain access to the raw data.
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