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Spin systems with frustration and disorder are notoriously difficult to study, both analytically and
numerically. While the simulation of ferromagnetic statistical mechanical models benefits greatly from
cluster algorithms, these accelerated dynamics methods remain elusive for generic spin-glass-like systems.
Here, we present a cluster algorithm for Ising spin glasses that works in any space dimension and speeds up
thermalization by at least one order of magnitude at temperatures where thermalization is typically difficult.
Our isoenergetic cluster moves are based on the Houdayer cluster algorithm for two-dimensional spin
glasses and lead to a speedup over conventional state-of-the-art methods that increases with the system size.
We illustrate the benefits of the isoenergetic cluster moves in two and three space dimensions, as well as the
nonplanar chimera topology found in the D-Wave Inc. quantum annealing machine.
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A plethora of problems across disciplines map onto spin-
glass-like Hamiltonians [1]. Despite decades of intense
analytical and numerical scrutiny, a deep understanding of
these paradigmatic models of disordered systems remains
elusive. Given the inherent difficulties of studying these
Hamiltonians analytically beyond mean-field theory as well
as the continuous increase of computer power, progress in
this field has benefited noticeably from numerical studies.
The development of efficient Monte Carlo methods such as
parallel tempering [2] and population annealing [3] has
helped in understanding these systems at a much deeper
level; however, most numerical studies are still plagued by
corrections to finite-size scaling due to the small system
sizes currently available [4].
In contrast, simulations of spin Hamiltonians without

disorder and frustration are comparably simple:
Ferromagnetic systems have greatly benefited from the
development of cluster algorithms [5,6] that help in over-
coming critical slowing down close to phase transitions.
Therefore, the holy grail of spin-glass simulations is to
introduce accelerated cluster dynamics that improve upon
the benefits of efficient simulation methods such as
population annealing or parallel tempering Monte Carlo.
In 2001 Houdayer introduced a seminal rejection-free
cluster algorithm tailored to work for two-dimensional
Ising spin glasses [7]. The method updates large patches
of spins at once, therefore effectively randomizing the
configurations and efficiently overcoming large barriers in
the free-energy landscape. Furthermore, the energy of the
system remains unchanged when performing a cluster
move. This means that the numerical overhead is very
small because the rejection rate is zero and there is no need
to, for example, compute any random numbers for a cluster
update. The use of these cluster moves made it possible to

obtain a speedup of several orders of magnitude in two-
dimensional systems, therefore allowing us to simulate
considerably larger system sizes.
While cluster algorithms such as the Swendsen-Wang

and Wolff ones [5,6] work well for ferromagnetic systems
in any space dimension because the clusters reflect the spin
correlations in the system, this is not the case for algorithms
that build clusters like the Houdayer cluster algorithm. In
this case, the clusters do not reflect overlap correlations
[8,9] and cluster updates only have an accelerating effect on
the dynamics if the clusters do not span the entire system or
if they comprise single spins. This is the case either when
temperatures are close to zero (small clusters) or when the
underlying geometry of the problem has a percolation
threshold below 50%—as is the case in three space
dimensions. Updating such a system-spanning cluster
amounts to swapping out both replicas, thereby not
randomizing the configurations. This means that while
the method works in principle, it does not really provide
any simulational benefit. As such, Houdayer cluster moves
work, in principle, only for models where the percolation
threshold is above 50%, as is the case in two-dimensional
Ising spin-glass Hamiltonians. One way to remedy this
situation is to increase the percolation threshold artificially,
e.g., by diluting the lattice [10]. However, this is often not
desirable and is highly dependent on the problem to be
studied.
Here, we show that Houdayer-like cluster moves can be

applied to spin systems on topologies where the percolation
threshold is below 50%, provided that the interplay of
temperature and frustration prevents clusters from spanning
the whole system. We therefore introduce isoenergetic
cluster moves for spin-glass-like Hamiltonians in any space
dimension. These rejection-free cluster moves accelerate
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thermalization by several orders of magnitude even for
systems with space dimensions larger than 2. We show
that the inherent frustration present in spin-glass
Hamiltonians prevents clusters from spanning the whole
system for temperatures below the characteristic energy
scale of the problem. As such, spin-glass simulations
can be sped up considerably in the hard-to-reach
low-temperature regime of interest in many numerical
studies.
The fact that the isoenergetic cluster moves are rejection

free and leave the energy of the system unchanged is also of
great importance to any heuristic based on Monte Carlo
updates to compute ground-state configurations of spin-
glass-like Hamiltonians. For example, the convergence of
simulated annealing [11] can be considerably improved by
adding isoenergetic cluster moves at each temperature step.
Because the moves change the spin configurations but
leave the energy of the system intact, the approach has the
potential to “tunnel” through energy barriers, thus improv-
ing overall convergence.
We first introduce the benchmark model, followed by a

short description of the Houdayer cluster algorithm and an
outline of our isoenergetic cluster algorithm. Results in two
and three space dimensions, as well as on the nonplanar
chimera topology [12] are presented.
Benchmark model and observables.—The Hamiltonian

of a generic Ising spin glass is defined by H ¼P
N
i≠j Jijsisj, where si ∈ f�1g represent Ising spins and

N is the total number of spins. In this study the interactions
Jij are selected from a Gaussian distribution with mean
zero and variance J2 ¼ 1. Because we are only interested in
highlighting the improved thermalization by adding iso-
energetic cluster moves, we measure the average energy per
spin defined via ½hHi�=N, as well as the link overlap

ql ¼ ð1=NbÞ
P

N
ij s

ð1Þ
i sð1Þj sð2Þi sð2Þj . Here, h� � �i represents a

Monte Carlo average, the superscripts represent two rep-
licas of the system, ½� � �� indicates an average over the
disorder, and Nb is the number of bonds in the system.
Using Gaussian disorder, one can equate the internal energy
per spin to the internal energy computed from the link
overlap [13], EðqlÞ, i.e.,

EðqlÞ ¼ −
J2

T
Nb

N
ð1 − qlÞ: ð1Þ

To test that the system is thermalized, we thus study the
time-dependent behavior of

Δ ¼ ½hEðqlÞi − hH=Ni�: ð2Þ
When Δ → 0, the bulk of the disorder instances are
thermalized [14]. Simulation parameters are listed in
Table I.
Reminder: Houdayer cluster algorithm.—The Houdayer

cluster algorithm (HCA) [7] is an efficient algorithm to
study two-dimensional Ising spin glasses at low temper-
atures where thermalization is slow. It is similar to replica
Monte Carlo [19], but with the difference that both replicas
are at the same temperature. By allowing large cluster
rearrangements of configurations, the HCA improves
thermalization by efficiently tunneling through configura-
tion space.
The algorithm works as follows: In the HCA, two

independent spin configurations (replicas) are simulated
at the same temperature. The site overlap between replicas
(1) and (2), qi ¼ sð1Þi sð2Þi , is calculated. This creates two
domains in q space: sites with qi ¼ 1 and qi ¼ −1. Clusters
are defined as the connected parts of these domains in q
space. One then randomly chooses one site with qi ¼ −1
and builds the cluster by adding all of the connected spins
in the domain with probability 1. When no more spins can
be added to the cluster in q space, the spins in both replicas
that correspond to cluster sites are flipped with probability
1, irrespective of their orientation. The method can be
implemented in a very efficient way because sites are added
to the cluster with probability 1 and the cluster updates are
rejection free. To ensure ergodicity, the cluster move is
combined with standard single-spin Monte Carlo updates.
Summarizing, one simulation step using the HCA consists
of the following steps: (1) Perform one Monte Carlo sweep
(N Metropolis updates) in each replica. (2) Perform one
Houdayer cluster move. (3) Perform one parallel tempering
update for a pair of neighboring temperatures.
Note that the last step is not necessary; however, the

combination of the HCA moves and parallel tempering

TABLE I. Parameters of the simulation in two space dimensions (2D), three space dimensions (3D), and on the
chimera (Ch) topology. For each topology simulated and system sizes N, we compute Nsa disorder instances and
measure over 2b Monte Carlo sweeps (and isoenergetic cluster moves) for each of the 2NT replicas. Tmin (Tmax) is
the lowest (highest) temperature simulated, andNT is the total number of temperatures used in the parallel tempering
Monte Carlo method. Isoenergetic cluster moves only occur for the lowest Nc temperatures simulated (determined
from Fig. 1).

N Nsa b Tmin Tmax NT Nc

2D 256, 576, 1024 104 22 0.2120 1.6325 30 30
Ch 128, 288, 512, 800, 1152 104 22 0.2120 1.6325 30 19
3D 64, 216, 512, 1000, 1728 1.5104 23 0.4200 1.8000 26 13
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(PT) updates improves thermalization considerably and
represents the standard modus operandi.
In theory, the efficiency of the HCA depends strongly on

the percolation threshold of the desired topology to be
simulated. Because spins are added to the cluster with
probability 1, if the percolation threshold of the studied
lattice is below 50%, then the cluster might span the entire
system and an update will not yield a new configuration.
This is the reason why the HCA is claimed to only work in
two space dimensions [7] where the percolation threshold
is above 50% (see also Fig. 1, top panel).
Isoenergetic cluster algorithm.—Our proposed isoener-

getic cluster moves are closely related to the HCA. We
begin by simulating two replicas with the same disorder at
multiple temperatures. The cluster moves alone are not
ergodic, so, again, these must be combined with simple
Monte Carlo updates. One simulation step using isoener-
getic cluster moves consists of the following steps:
(1) Perform one Monte Carlo sweep (N Metropolis
updates) in each replica. (2a) If the number of cluster sites
with qi ¼ −1 is greater than N=2, then all of the spins in
one of the configurations can be flipped (because of spin-
reversal symmetry), thus reducing the cluster size while
leaving the energy unchanged. (2b) Perform one Houdayer
cluster move for all temperatures T ≲ J. (3) Perform
one parallel tempering update for a pair of neighboring
temperatures.
The main difference thus lies in applying cluster moves

to a carefully selected set of temperatures where the
isoenergetic cluster moves (ICMs) are efficient (steps 2a
and 2b) because clusters do not percolate, as well as
reducing cluster sizes and thus the numerical overhead
by exploiting spin-reversal symmetry (step 2a) [20,21]. For
example, in the case of the chimera lattice, the overhead of
the ICM over PT is approximately 25% and is roughly
independent of the system size for the studied N. However,
the overhead for the HCA over PT is at least 50% and
grows with increasing system size.
Figure 1 shows the fraction of spins with negative

overlap (i.e., the fraction of potential cluster sites) as a
function of temperature T for different system sizes N and
on three different topologies. The top panel of Fig. 1 shows
data in two space dimensions where the percolation thresh-
old is pc ≈ 0.592 [15] (the solid horizontal line). As such,
for all temperatures simulated, the fraction of cluster sites is
below the percolation threshold and saturates at 50% for
T → ∞. This means that isoenergetic cluster updates are
efficient for all temperatures studied because the clusters
never percolate. Naively, one would expect that in higher
space dimensions clusters percolate for all T’s. This is,
however, not the case due to the frustration present in spin
glasses, as can be seen for the chimera topology (the center
panel of Fig. 1) or in three space dimensions (the bottom
panel of Fig. 1). For increasing system size the fraction of
cluster sites converges to a limiting curve that crosses the

FIG. 1 (color online). (Top panel) Fraction of spins p of
potential cluster sites as a function of temperature T for different
system sizes N in two space dimensions (2D). The horizontal line
represents the percolation threshold of a two-dimensional square
lattice, i.e., pc ≈ 0.592 [15]. Because p → 0.5 for T → ∞, for
all T, clusters do not percolate, which is why the HCA is efficient
in two-dimensional planar geometries. (Center panel) p as a
function of temperature T for different system sizes N on the
chimera topology. The horizontal line represents the percolation
threshold of the nonplanar chimera topology, namely, pc ≈ 0.387,
computed here using the approach developed in Ref. [16] (see the
Supplemental Material [17]). For T ≳ J ¼ 1 clusters percolate
and cluster updates provide no gain. (Bottom panel) p as a
function of temperature T for different system sizes N in three
space dimensions (3D). The horizontal line represents the
percolation threshold of the three-dimensional cubic lattice
(pc ≈ 0.311 [18]). For T ≳ J ¼ 1 clusters percolate. In all panels,
error bars are computed via a jackknife analysis over configu-
rations and are smaller than the symbols.

PRL 115, 077201 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

077201-3



percolation threshold (the horizontal solid lines) at approx-
imately T ≈ J ¼ 1. This means that, for all T ≳ J, clusters
percolate and the cluster updates are just numerical over-
head without any advantage to the simulation. However, for
T ≲ J the fraction of cluster sites lies below the percolation
threshold. This means that performing cluster moves in this
temperature regime should improve thermalization. Note
that it is a coincidental property that for three-dimensional
Ising spin glasses Tc ∼ 1 [22], i.e., that cluster moves can
be applied to any T ≲ Tc [23].
When the interactions Jij are drawn from a Gaussian

distribution, the ground state is unique. As can be seen in
Fig. 1, the fraction p of spins potentially in a cluster also
approaches zero for T → 0; i.e., both replicas are in the
ground state for low enough T. Therefore, the cluster is
composed of no sites or the entire lattice. In the case of
disorder distributions that yield a highly degenerate ground
state, such as is the case for bimodal disorder, it is possible
to continue to have clusters at zero temperature. It is thus
possible to efficiently hop around the ground-state mani-
fold by applying cluster moves to low-lying or even zero-
temperature states, although this might not be ergodic. We
do emphasize, however, that if clusters are too small, then
the isoenergetic cluster moves also become ineffective.
Therefore, plotting p as was done in Fig. 1 is essential in
determining the efficiency and applicability of the method.
Benchmarking results.—Figure 2 shows Δ [Eq. (2)] as a

function of Monte Carlo time (measured in lattice sweeps)
t ¼ 2b. The top panel of Fig. 2 shows data in two space
dimensions for simulations using isoenergetic cluster
moves (PTþ ICM) and vanilla PT Monte Carlo for
N ¼ 1024 spins at T ¼ 0.212. Once Δ ∼ 0, we deem the
system thermalized. Clearly, the inclusion of cluster moves
—as can also be expected from the results of Houdayer—
shows an improved thermalization. The center panel of
Fig. 2 shows data on the chimera topology with
N ¼ 1152 spins and T ¼ 0.212, where the HCA is not
expected to show any improvement over PT due to
pc < 0.5. As can be seen, our ICM clearly improve
thermalization in comparison to PT by at least 2 orders
of magnitude, an amount that grows with increasing
system size. Finally, the bottom panel of Fig. 2 shows Δ
as a function of simulation time in three space
dimensions with N ¼ 1728 spins and T ¼ 0.42 ≪ Tc.
Although not as impressive as with the chimera
topology, we see a speedup of approximately one order
of magnitude—an amount that again grows with increasing
system size.
Finally, Fig. 3 shows the ratio of the thermalization time

using PT and using PTþ ICM for different topologies at
the lowest simulation temperature (see Table I) as a
function of the system size N. In all cases, the speedup
increases with increasing system size, therefore illustrating
that the addition of isoenergetic cluster moves greatly
improves thermalization.

FIG. 2 (color online). (Top panel) Δ [Eq. (2)] as a function of
simulation time t ¼ 2b measured in Monte Carlo sweeps in two
space dimensions (2D) for N ¼ 1024 and T ¼ 0.212. Simula-
tions using vanilla PT thermalize at least 225 Monte Carlo sweeps,
whereas with the addition of ICMs thermalization is reduced to
approximately 216 Monte Carlo sweeps. This means approxi-
mately 2 orders of magnitude improvement. (Center panel) Δ as a
function of simulation time t ¼ 2b measured in Monte Carlo
sweeps for an Ising spin glass on chimera with N ¼ 1152 spins at
T ¼ 0.212. Simulations using PT thermalize at approximately 225

Monte Carlo sweeps, whereas the addition of ICMs reduces
thermalization to 218 Monte Carlo sweeps. Again, approximately
2 orders of magnitude speedup. (Bottom panel) Δ as a function of
simulation time t ¼ 2b measured in Monte Carlo sweeps in three
space dimensions (3D) for N ¼ 1728 and T ¼ 0.42 ∼ 0.43Tc.
Using standard PT, the system thermalizes approximately after
223 Monte Carlo sweeps. This time is reduced to ∼220
Monte Carlo sweeps when ICMs are added. In all panels,
error bars are computed via a jackknife analysis over configu-
rations.
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Summary.—We have presented a rejection-free cluster
algorithm for spin glasses in any space dimension that
greatly improves thermalization. By restricting Houdayer
cluster moves to temperatures where cluster percolation is
hampered by the interplay of frustration and temperature,
we are able to extend the Houdayer cluster algorithm for
two-dimensional spin glasses to any topology or space
dimension. Our standard implementation of the cluster
updates represents only a minor overhead [21] compared to
the thermalization time speedup obtained from the iso-
energetic cluster moves—a speedup that increases with the
system size [26].
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