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We study the quantum phase diagram of a three dimensional noninteracting Dirac semimetal in the
presence of either quenched axial or scalar potential disorder, by calculating the average and the typical
density of states as well as the inverse participation ratio using numerically exact methods. We show that as
a function of the disorder strength a half-filled (i.e., undoped) Dirac semimetal displays three distinct
ground states, namely an incompressible semimetal, a compressible diffusive metal, and a localized
Anderson insulator, in stark contrast to a conventional dirty metal that only supports the latter two phases.
We establish the existence of two distinct quantum critical points, which respectively govern the semimetal-
metal and the metal-insulator quantum phase transitions and also reveal their underlying multifractal
nature. Away from half-filling the (doped) system behaves as a diffusive metal that can undergo Anderson
localization only, which is shown by determining the mobility edge and the phase diagram in terms of
energy and disorder.
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The development of Lorentz invariant relativistic quan-
tum mechanics naturally led to the discovery of the
celebrated Dirac equation [1] to describe the electron
and positron. In high energy physics there are no massless
Dirac fermions, as both leptons and quarks are massive
particles and it is only at energy scales higher than the
corresponding mass gap, that they can be approximated as
massless. In contrast, many condensed matter systems
support a gapless phase, where twofold Kramers degener-
ate conduction and valence bands touch linearly at isolated
points in the Brillouin zone. The low energy excitations
around these diabolic points (known as Dirac points, where
the conical conduction and valence bands touch each other)
can be described by a massless Dirac equation in the
infrared limit; such a phase is known as a Dirac semimetal
(DSM) if the system is undoped with the Fermi level
precisely at the Dirac point.
Recently, an intense experimental investigation into

narrow gap semiconductors [2] has led to the discovery
of three dimensional DSMs in various materials such as
Cd3As2 [3–5], Na3Bi [4,6], Bi1−xSbx [7–9], BiTlðS1−δSeδÞ2
[10,11], ðBi1−xInxÞ2Se3 [12,13], and Pb1−xSnxTe [2,14,15].
These experiments have now raised the exciting prospect of
studying the physics of three dimensional massless Dirac
fermions in solid state systems. Because of the ubiquitous
presence of disorder in all solid state systems, a precise
understanding of the phase diagram of dirty DSMs is
therefore a problem of deep fundamental importance,
which can only be studied in condensed matter systems
since the corresponding relativistic Dirac problem in
particle physics does not, by definition, have any disorder.
While effects of disorder in conventional metals are fairly

well understood [16–19], this is not the case for three
dimensional DSMs where the applicable quantum phase
diagram and (even) the question of how many allowed
phases may exist as a function of disorder are still
wide open.
Because of the finite density of states (DOS) at the Fermi

energy, a conventional metal (CM) (or a Fermi liquid) is a
compressible state of matter, and an infinitesimally weak
disorder acts as a relevant perturbation for the ballistic
Fermi liquid fixed point, giving rise to a finite lifetime for
the ballistic single particle excitations [20]. Therefore, a
dirty, noninteracting CM in three dimensions only supports
two phases, namely, a diffusive metal and a localized
Anderson insulator (AI) [21]. The Anderson localization is
a continuous quantum phase transition (QPT), for which
the spatial dimension d ¼ 2 serves as the lower critical
dimension [21]. This QPT is reflected in the spatial
variation of the wave function and can only be captured
by quantities that probe its extended or localized nature,
such as the inverse participation ratio (IPR) [22,23], and the
typical DOS (TDOS) [18,24,25]. However, a self-averaging
quantity such as the average DOS (ADOS) itself remains
unaffected by the localization transition.
In contrast to CMs, a half-filled (i.e., undoped) three

dimensional DSM is an incompressible fermionic quantum
critical system, which leads to a quadratically vanishing
DOS at the Fermi level. Consequently, any weak disorder
acts as an irrelevant perturbation for a three dimensional
DSM. Therefore, the three dimensional ballistic DSM
phase should remain stable up to a critical strength of
disorder Wc. At this threshold, the DSM undergoes a
continuous QPT into a compressible diffusive metal
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(CDM) phase [26,27], and the ADOS at zero energy acts as
an order parameter for describing this transition, while
distinguishing it from a conventional Anderson localiza-
tion. Based on a nonlinear sigma model analysis, the CDM
phase has been argued to display an Anderson localization
at a higher strength of disorder Wl, which belongs to the
unitary (A) universality class [26]. The first analysis of the
DSM-CDM transition in Ref. [26] was a mean-field one,
and only recently the non-Gaussian nature of this quantum
critical point (QCP) has been elucidated [27].
Subsequently, the DSM-CDM phase transition has been
addressed using various analytic [28–31] and numerical
methods [32–34]. However, the effects of large disorder
and the Anderson localization transition have not been
studied through any numerically exact approach. Moreover,
there have been recent claims that rare-region effects
convert the DSM into a CDM for an infinitesimally weak
disorder strength [35] so that there is in fact no DSM-CDM
transition at all. Therefore, it is still an important open
question to figure out how many distinct quantum phases
indeed exist in a dirty 3D Dirac system for finite disorder
(one or two or three with DSM/CDM/AI being all the
possibilities) through a nonperturbative calculation, in
addition to establishing the appropriate universality of
any applicable disorder-driven QPT in the system. In the
current paper we answer this question through extensive
exact numerical work supplemented by theoretical
arguments.
We study the phase diagram of a dirty DSM in three

dimensions using numerically exact methods. We calculate
the ADOS and the TDOS on sufficiently large lattice sizes
reaching up to 603 sites, using the kernel polynomial
method (KPM) [36]. As the TDOS tracks the ADOS in
any metallic phase and also serves as an order parameter for
Anderson localization [18,24], it can naturally capture both

possible (DSM-CDM-AI) QPTs (see Fig. 1). We firmly
establish that a disordered DSM in three dimensions
possesses two distinct QPTs as a function of disorder
strength, as shown in Figs. 1 and 3. The TDOS at zero
energy is only finite in the CDM region Wc < W < Wl, in
contrast to the ADOS at zero energy which is finite for any
W > Wc. This provides unambiguous evidence for the
existence of three phases and the different nature of the two
distinct disorder-tuned QPTs. The nature of the QCP
between the DSM and the CDM phases has been studied
through an extensive numerical computation of the ADOS
in Refs. [32,34]. As the TDOS and the ADOS track each
other in a metal, our calculation provides further numerical
evidence for the stability of the DSM phase in the presence
of weak disorder. We supplement the DOS analysis through
exact calculations of the wave function for small system
sizes in order to estimate the critical exponents of the
Anderson localization transition. Here, our goal is not to
establish the precise values for the critical exponents of the
Anderson localization transition. Rather, we want to show
that the estimated critical exponents for the CDM-AI QCP
are comparable to the ones known for the conventional
orthogonal (AI) Wigner-Dyson universality class [17,19],
and are strikingly different from the ones obtained for the
DSM-CDM QCP [32,34]. Since our model of a DSM
preserves time reversal symmetry, we expect the Anderson
localization transition to be described by the orthogonal
(AI) class [17,19,37] for short range disorder.
We consider the following Hamiltonian on a cubic lattice

with periodic boundary conditions:

H ¼ 1

2

X
r;μ̂

ðitψ†
rαμψ rþeμ̂ þH:c:Þ þ

X
r

VðrÞψ†
rAWψ r;

ð1Þ
where ψT

r ¼ ðcr;þ;↑; cr;−;↑; cr;þ;↓; cr;−;↓Þ is a four compo-
nent Dirac spinor composed of an electron at site r, with a
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FIG. 1 (color online). Phase diagram of three dimensional Dirac
semimetals. Left: ρað0Þ and ρtð0Þ for L ¼ 60, clearly displaying
the existence of three distinct phases DSM, CDM, and AI. The
TDOS tracks the ADOS inside the DSM, through the semimetal-
metal QCP, and then ρtð0Þ goes to zero at Wl, signaling the
Anderson localization transition. Right:MedgeðEÞ as a function of
energy and disorder strength for L ¼ 60. The white and the blue
regions are, respectively, metallic and localized, and the blank
region is gapped (outside the bandwidth), which clearly shows
the existence of the energy dependent mobility edge. The value of
MedgeðEÞ is shown in the key.
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FIG. 2 (color online). Critical properties of the two quantum
critical points. Left: power law dependence of ρað0Þ and ρtð0Þ as
a function of disorder strength in the vicinity of the DSM-CDM
QCP for L ¼ 60. Right: the Anderson localization QCP from the
TDOS as a function of the Chebyshev expansion order Nc for
L ¼ 30, respectively, in three and (inset) two dimensions. We
find the localization transition in three dimensions is converging
to W3d

l =t ¼ 8.9� 0.3 in three dimensions whereas in two
dimensions W2d

l =t → 0 as Nc → ∞ by extrapolating ρtð0Þ to
zero (dashed lines).
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parity (�) and spin (↑=↓), μ̂ ¼ x̂; ŷ; ẑ, eμ̂ is a unit vector
that points to each nearest neighbor, and the αμ are 4 × 4
anticommuting Dirac matrices. In the absence of disorder,
the tight binding model gives rise to eight Dirac cones at the
Γ, M, R, and X points of the cubic Brillouin zone. The
disorder potential at each site VðrÞ is a randomly distrib-
uted variable between ½−W=2;W=2� and AW is a matrix that
specifies the type of disorder. We primarily focus on the
random axial chemical potential AW ¼ γ5 ¼ iα1α2α3, but
also discuss the effects of a random scalar potential AW ¼
I4×4 (where I4×4 is a four by four identity matrix). We
consider these two types of disorder because we want to
demonstrate universality in the sense that both disorders
give rise to identical phase diagrams. This is also implied
by the existence of two continuous U(1) symmetries under
ψ → eiθψ and ψ → eiϕγ5ψ . In addition, axial disorder is
pertinent for addressing the phase diagram of dirty gapless
superconductors.
TDOS and ADOS.—To track the nature of each phase of

the model defined in Eq. (1), we first calculate the ADOS,
the local DOS (LDOS), and the TDOS using the KPM (see
Ref. [36] for details), which are defined as

ρaðEÞ ¼
�

1

4V

XV
i¼1

X4
α¼1

δðE − EiαÞ
�
; ð2Þ

ρiαðEÞ ¼
X
k;β

jhk; βji; αij2δðE − EkβÞ; ð3Þ

ρtðEÞ ¼ exp

�
1

4Ns

XNs

i¼1

X4
α¼1

hlog ρiαðEÞi
�
. ð4Þ

The size of the system considered is V ¼ L3, where ji; αi
denotes an eigenstate at site i and orbital α (one of the four
Dirac orbitals) with an energy Eiα, and the h…i denotes a
disorder average. As the ADOS is self-averaging, we only
include the disorder average to smoothen the data. For the
calculations of the ADOS presented here with a system size
V ¼ 603 we have only used 12 disorder averages. In

contrast, the TDOS is not a self-averaging quantity and
it requires a significant number of disorder averages to
obtain a convergent result. After the disorder averaging,
translation symmetry is restored and consequently we also
sum over a finite number of lattice sitesNs ≪ V to improve
the statistics. We provide the parameters used in the study
in the Supplemental Material [37]. Central to the KPM, we
first expand the LDOS or the ADOS in terms of the
orthogonal Chebyshev polynomials up to an order Nc. For
the ADOS we have considered Nc ¼ 1028, whereas the
computation of the TDOS is much more demanding [36]
and for most of the calculations we have used Nc ¼ 8192,
unless stated otherwise.
The DSM is characterized by an ADOS ρaðEÞ ∝ jEj2,

that vanishes at zero energy. As shown in Fig. 1, both ρað0Þ
and ρtð0Þ vanish for weak disorder strengths, and con-
comitantly become finite after passing through the DSM-
CDM QCP at Wc=t ≈ 2.55 [34], in a power law fashion as

ρaðE ¼ 0;W ≥ WcÞ ∼ ðW −WcÞx; ð5Þ

ρtðE ¼ 0;W ≥ WcÞ ∼ ðW −WcÞxt ; ð6Þ

where we find x ¼ 1.4� 0.2 (in agreement with
Refs. [32,34] for much larger system sizes) and xt ¼ 2.0�
0.3 as shown in Fig. 1. Physically, the average moments of
the LDOS hρiðEÞni captures the multifractal nature of the
disordered wave function [17,18,42]. Therefore the differ-
ence xt − x ¼ 0.60� 0.36 reveals the underlying multi-
fractal nature of the DSM-CDM QCP. We have checked
that the value of Wc determined from ρað0Þ is within
numerical accuracy unaffected by increasing Nc.
Inside the CDM phase ρtð0Þ tracks ρað0Þ (ρt ∼ ρa) up to

W=t ≈ 4.5. As ρa is a self-averaging quantity, we can
conclude that the DSM-CDM transition is completely
independent of Anderson localization. For larger values
of disorder (W=t > 4.5) ρa remains finite and ρt goes to
zero continuously at the localization transition as

ρtðE ¼ 0;W ≤ WlÞ ∼ ðWl −WÞβ. ð7Þ

We determine the location of the transition by studying the
effect of increasing the Chebyshev expansion order on ρt,
asWl has been shown to be sensitive to Nc in Ref. [43]. By
extrapolating ρtðE ¼ 0Þ to zero, we find Wl=t ¼ 8.9� 0.3
with an order parameter critical exponent β ¼ 1.5� 0.2, as
shown in Fig. 2.
In order to further understand the stability of the CDM

against localization effects, we compare the TDOS for a
DSM in two and three spatial dimensions in Fig. 2. The two
dimensional model of a DSM is obtained by setting the
hopping along the z direction to zero in Eq. (1), which gives
rise to four Dirac cones at the high symmetry points of the
Brillouin zone for a square lattice. In two dimensions, both
axial and scalar potential disorders are marginally relevant

FIG. 3 (color online). TDOS with L ¼ 60 as a function of
energy for various values of disorder. Left: passing through the
DSM-CDM QCP, Right: passing through the Anderson locali-
zation transition. The arrows denote increasing disorder strengths
from W=t ¼ 2.0 to 4.5 (left) and from W=t ¼ 5.0 to 13.0 (right).
We see no signs of rare region effects [35] in the numerics.
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perturbations, and an infinitesimal amount of disorder leads
to an AI [37,44,45]. This is in excellent agreement with our
numerical results, namely, W2d

l =t → 0 as Nc → ∞. In
contrast, in three dimensions we find the DSM phase to
be stable up to Wc (Fig. 1), where ρað0Þ and ρtð0Þ
simultaneously develop finite values, and the CDM phase
undergoes an Anderson localization at a much larger
disorder strength Wl. Therefore, our results establish
the existence of three distinct ground states for a dirty
DSM in three dimensions (DSM/CDM/AI with
increasing disorder), in agreement with the field theoretic
analysis.
By considering the energy dependence of ρt as shown in

Fig. 3, we find ρtðEÞ ∼ jEj2 inside the DSM phase [i.e., in
agreement with ρaðEÞ [37]]. In contrast, ρtð0Þ approaches a
constant inside the CDM phase. Within this framework, we
can capture the location of the mobility edge separating
the CDM and AI phases by considering the ratio
MedgeðEÞ ¼ ρtðEÞ=ρaðEÞ. As shown in Fig. 1, starting
from the CDM phase, the system develops a finite, energy
dependent mobility edge and the entire band localizes for a
larger disorder strength going to an AI phase, qualitatively
similar to the situation for a three dimensional CM.
Because of the underlying Dirac band structure, the shape
of the mobility edge is different from a conventional tight
binding model (e.g., see Ref. [46]). This phase diagram also
demonstrates that a DSM away from half-filling behaves as
a CM.
Wave function.—In order to understand the critical

properties of the localization transition and compare our
results with the well-established universality classes for
Anderson localization, we now study the properties of the
wave function. The qualitative nature of the wave function
also displays all of the physics we have discussed so far
[37]. Here, we focus on the average participation ratio
defined as

Pavg ¼
�½Pi;αjψαðriÞj2�2P

i;αjψαðriÞj4
�

ð8Þ

for wave functions ψαðriÞ and only focus on the center of
the band E ¼ 0 (otherwise P−1

avg will be a function of
energy). It is well known [18] that the IPR scales as P−1

avg ∼
1=V in a metallic phase and P−1

avg ∼ const in a localized
phase [37]. As these calculations require an exact diago-
nalization of the Hamiltonian, we are restricted to much
smaller lattice sizes than considered for the DOS. Here we
focus on linear system sizes L ¼ 4; 6; 8; 10; 12 with 10 000
disorder realizations for L ¼ 4–10 and 1000 for L ¼ 12.
Because of the limited system sizes, we first expand the IPR
in the vicinity of the localization transition in terms of an
unknown scaling function f and L dependent corrections,
[18,46–49] P−1

avg≈L−d2 ½f(ð1−Wl=WÞL1=ν)þA0=Ly�. We
have introduced the fractal dimension d2, the localization

length exponent ν, A0 is a finite size correction, and y the
leading order irrelevant variable’s critical exponent [47].
To determine the location of the transition we calculate the
best recursive fit to YIPR ¼ P−1

avgLd2 − A0L−y, using finite
size scaling techniques [47,50]; see Fig. 4. As a result, we
find a localization transition at Wl=t ¼ 8.8� 0.3 in excel-
lent agreement with the typical DOS results. This also
yields d2 ¼ 1.2� 0.3, y ¼ 2.3� 0.5, and A0 ¼ 1.8� 0.6.
Now that we have determined the critical point using two

different methods we perform scaling data collapse to
extract the localization length exponent, which yields
ν ¼ 1.5� 0.2. Within the numerical accuracy, ν, y,
and d2 are consistent with the known exponents for the
orthogonal (AI) class (ν ¼ 1.57, y ¼ 2.8, and d2 ¼ 1.23)
[46,47,52]. In previous studies of Anderson localization,
it was found that typical DOS exponent satisfies
β ¼ νðα0 − dÞ [18,19]. We also find this relation to hold
with α0 ¼ 4.0� 0.3, which is consistent with α0 ¼ 4.043
[52] for class AI.
In conclusion, we have performed a detailed numerically

exact study of the quantum phase diagram and Anderson
localization in three dimensional dirty DSMs. By studying
the TDOS on sufficiently large lattices we have established
the existence of three phases for a half-filled system DSM,
CDM and AI, separated by two different QCPs as a
function of disorder. We have supplemented this with a
precise finite size scaling analysis of the IPR and obtained
the critical exponents of the localization transition. We also
establish clear signatures for multifractility at the QPTs. In
addition, we find the localization properties for both
axial and scalar potential disorders to be identical (to
within numerically accuracy) [37], and therefore, we
conclude that the QPTs driven by either disorder belong
to the same universality class. As the model we have
studied for axial or potential disorder separates into two
blocks of Weyl Hamiltonians [37], our results are equally
valid for three dimensional time reversal symmetric Weyl
systems.
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FIG. 4 (color online). Finite size scaling of the IPR. Left:
determining the location of the Anderson localization transition
by optimizing the crossing location of YIPR by third order
polynomial fits to the IPR; this yields Wl=t ¼ 8.8� 0.3. Right:
data collapse of YIPR in the vicinity of Wl as a function of
ð1 −Wl=WÞL1=ν, yields a localization length exponent ν ¼
1.5� 0.2. Inset: optimizing the data collapse using the local
linearity function SðνÞ (as described in Ref. [51]); the value of ν
is determined by the minimum of SðνÞ.
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