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We consider two-dimensional bosonic dipoles oriented perpendicularly to the plane. On top of the usual
two-body contact and long-range dipolar interactions we add a contact three-body repulsion as expected, in
particular, for dipoles in the bilayer geometry with tunneling. The three-body repulsion is crucial for
stabilizing the system, and we show that our model allows for stable continuous space supersolid states in
the dilute regime and calculate the zero-temperature phase diagram.
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Recent advances in the field of cold polar molecules
[1,2] and magnetic atoms [3,4] interacting via long-range
dipole-dipole forces make it realistic to create novel many-
body quantum states in these systems. For polar molecules,
ultracold chemical reactions observed at JILA [5,6] and
leading to a rapid decay of the system can be suppressed
by tightly confining the molecules to a (quasi-)two-
dimensional (2D) geometry, orienting the dipoles perpen-
dicularly to the plane of their translational motion, and
thus inducing a strong intermolecular repulsion [7–9].
Therefore, 2D geometries are intensively discussed in
the context of ultracold dipolar gases [10–13], together
with possible experiments with nonreactive molecules such
as NaK [14,15] and RbCs [16,17].
The studies of ultracold dipolar gases may open per-

spectives for the observation of supersolidity. This remark-
able quantum phenomenon combines superfluidity with a
crystalline order [18,19] (see Ref. [20] for review). It is
still under debate as to what extent experimental results in
solid helium prove the existence of this conceptually
important phase [21]. On the other hand, supersolidity is
rather well understood theoretically for soft-core two-body
potentials [20,22–26], which can be realized, for example,
in Rydberg-dressed atomic gases. However, such super-
solids require a dense regime with at least several particles
within the interaction range, which can be difficult to
achieve. The same holds for supersolids discussed for 2D
dipolar Bose gases [27] near the gas-solid phase transition
[28,29]. It is thus an open question whether supersolids can
exist in the dilute regime. The creation of such supersolids,
especially if they are tunable regarding the lattice period,
will allow for studies of nonconventional superfluid proper-
ties of supersolids and other aspects of supersolidity. Dilute
2D dipolar bosons may show the (heliumlike) roton-maxon
structure of the spectrum by fine tuning the short-range part
of the interaction potential and can be made unstable with

respect to periodic modulations of the order parameter
(roton instability) [30]. However, instead of forming a
supersolid state when approaching such an instability, the
gas collapses [31,32].
In this Letter we predict a stable supersolid state in a dilute

two-dimensional dipolar system. In contrast to the earlier
proposed soft-core supersolids, where the lattice period is of
the order of the core radius, in our case it is tunable byvarying
the density and the dipole moment. In addition to the contact
two-body term g2 and the dipole-dipole long-range tail
characterized by the dipole moment d, we include a contact
repulsive three-body term g3, which may prevent the
collapse. Three-body forces are ubiquitous and arise natu-
rally in effective field theories when one integrates out some
of the high-energy degrees of freedom in the system [33].
In particular, our model can be realized for dipoles in the
bilayer geometry with interlayer tunneling [34]. Tracing out
the degree of freedom associated with the layer index one
obtains an effective single-layermodel inwhich g2 and g3 can
be independently controlled by tuning the interlayer tunnel-
ing amplitude. Here, we work out the phase diagram of this
model and identify stable uniform and supersolid states.
The Hamiltonian of the system reads

H ¼ −
Z

d2rψ̂†ðrÞℏ
2∇2

2m
ψ̂ðrÞ þH2

þ g3
6

Z
d2rψ̂†ðrÞψ̂†ðrÞψ̂†ðrÞψ̂ðrÞψ̂ðrÞψ̂ðrÞ; ð1Þ

where ψ̂ðrÞ is the bosonic field operator, m is the particle
mass, and the normalization volume is set equal to unity.
The first term in Eq. (1) corresponds to the kinetic
energy, the third one to the contact three-body repulsion
(g3 > 0), and the two-body interaction Hamiltonian H2 at
low energies can be substituted by an effective momentum-
dependent (pseudo)potential (see, e.g., Ref. [35])
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~Vðk;k0Þ ¼ ~Vðjk − k0jÞ ¼ g2 − 2πd2jk − k0j; ð2Þ

where k and k0 are the incoming and outgoing relative
momenta, g2 is the contact term, which depends on the
short-range details of the two-body potential, and the
momentum-dependent part corresponds to the long-range
dipolar tail for dipoles oriented perpendicularly to the plane
of their translational motion. We thus have

H2 ¼
1

2

Z
d2rd2r0ψ̂†ðrÞψ̂†ðr0Þ

X
q

~VðqÞeiqðr0−rÞψ̂ðrÞψ̂ðr0Þ:

ð3Þ
The onset of supersolidity is frequently associated with

the presence of a low-lying roton minimum in the excitation
spectrum [23,36,37]. In our case the standard Bogoliubov
approach for a uniform Bose condensate of density n gives
the excitation spectrum

ϵðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
k þ 2Ekðg2nþ g3n2 − 2πnd2kÞ

q
; ð4Þ

where Ek ¼ ℏ2k2=2m, and we assume that ðg2 þ g3nÞ > 0.
The validity conditions for the mean-field approach read

nr2� ≪ 1; mðg2 þ g3nÞ=ℏ2 ≪ 1; ð5Þ
where r� ¼ md2=ℏ2 is a characteristic range of the dipole-
dipole interaction. The structure of the spectrum is char-
acterized by a dimensionless parameter β given by

β ¼ γ=ð1þ g2=g3nÞ; γ ¼ 4π2ℏ2r2�=mg3: ð6Þ
The excitation energy ϵðkÞ shows a roton-maxon structure
(local maximum and minimum at finite k) for β in the
interval 8=9 < β < 1, and at β ¼ 1 the roton minimum
touches zero. For β > 1 the excitation energies become
imaginary, and the uniform superfluid (U) is dynamically
unstable and is no longer the ground state.
A promising candidate for the new ground state is a

supersolid state in which the condensate wave function is a
superposition of a constant term and a lattice-type function
of coordinates [18,19,23,36]. We considered various lattice
structures and found that the ground state can be either a
triangular lattice supersolid (T) or a stripe supersolid (S)
[38]. For theT phase, the lattice is built up on three vectors in
the x; y plane of the translational motion, with the angle of
2π=3 between each pair:k1 ¼ ðk; 0Þ,k2 ¼ ð−k=2; ffiffiffi

3
p

k=2Þ,
and k3 ¼ ð−k=2;− ffiffiffi

3
p

k=2Þ, while for the S phase the
density modulation depends only on one wave vector
k ¼ ðk; 0Þ.
The variational Ansatz for the condensate wave function

of the T phase then takes the form

ψTðrÞ ¼
ffiffiffi
n

p �
cos θ þ

ffiffiffiffiffiffiffiffi
2=3

p
sin θeiΦ

X
i

coskir

�
; ð7Þ

and for the S phase we have

ψSðrÞ ¼
ffiffiffi
n

p ðcos θ þ
ffiffiffi
2

p
sin θeiΦ cos kxÞ; ð8Þ

which satisfies the normalization conditionR
drjψTðSÞðrÞj2 ¼ n, with n being the mean density. The

variational parameters of the wave functions are θ,Φ, and k.
Density modulations appear at θ ≠ 0, and thus θ is the order
parameter that exhibits the U to supersolid transition. We
have checked that the lowest energy always corresponds to
Φ ¼ 0 and for brevity we omit this parameter.
For obtaining the energy functionals of the T and S

states, we replace the field operators in Eqs. (1) and (3) with
ψTðrÞ and with ψSðrÞ, respectively. This yields

Ei ¼ ½Ekn− 4πn2d2kDiðθÞ�sin2θþ g2n2CiðθÞþ g3n3T iðθÞ;
ð9Þ

where the symbol i stands for T and S, and the functions
DTðSÞðθÞ, CTðSÞðθÞ, and T TðSÞðθÞ are related to the two-body
dipole-dipole, two-body contact, and three-body contact
interactions, respectively [38].
By minimizing Eq. (9) with respect to k we obtain

EiðkmiÞ ¼ g2n2CiðθÞ þ g3n3½T iðθÞ − 2γsin2θD2
i ðθÞ�;

ð10Þ
where kmi ¼ 4πnr�DiðθÞ. In the dilute limit of Eq. (5) the
particle number per unit modulation volume is nð2π=kmiÞ2∼
1=nr2� ≫ 1, which justifies the mean-field approach.
The energy functional ETðSÞ can be expanded in powers

of θ. The zero-order term Eðθ ¼ 0Þ ¼ g2n2=2þ g3n3=6
gives the energy density of the uniform state. The expan-
sion of ET contains terms∝ θ3 [38], which is a consequence
of the fact that the vectors k1, k2, and k3 form a closed
triangle (“triad,” k1 þ k2 þ k3 ¼ 0) [19]. In contrast, the
expansion of ES contains only even powers of θ. According
to the Ginzburg-Landau theory [41,42], the U-supersolid
transition should occur to the T phase and it is expected to
be first order, so that θ jumps from 0 to a finite value.
However, deeply in the supersolid regime the states with
different structures are energetically competing and, in
particular, the stripe phase can become the ground state of
the system.
First-order transitions are convenient to analyse in the

grand-canonical picture. We obtain the phase diagram
by variationally minimizing the grand potential Ω ¼
ETðSÞ − μn with respect to θ and n for given values of
the chemical potential μ and the interaction parameters g2,
g3, and d. We have checked the phase diagram by employ-
ing the full numerical minimization of the grand potential
density, which is equivalent to solving the corresponding
Gross-Pitaevskii (GP) equation [38].
First, let us consider g2 ¼ 0. In this case the energy

functional E only contains terms ∝ n3, and the phase
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diagram is determined by a single dimensionless parameter
γ defined in Eq. (6). TheU to T transition occurs before the
roton minimum touches zero (for g2 ¼ 0 we have β ¼ γ),
namely, at γ0 ≃ 0.99, where θ jumps from 0 to 0.0946.
The inverse compressibility κ−1 ¼ ∂μ=∂n ¼ 6E=n2 is
positive for γ smaller than approximately 1.4, indicating
the existence of a stable supersolid state. However, our
numerics predicts the collapse instability at about γc ≈ 0.88
and indicates that for lower values of γ the ground state is a
uniform superfluid. The discrepancy between the numerics
and the variational Ansatz comes from the fact that the
latter does not take into account higher order momentum
harmonics.
For g2 ≠ 0, we turn to the rescaled dimensionless

density ~n ¼ ng3=jg2j, chemical potential ~μ ¼ μg3=g22,
and grand potential ~ΩTðSÞ ¼ ðg23=jg2j3ÞΩTðSÞ ¼ ~ETðSÞ − ~μ ~n.
The rescaled energy functional is given by

~Ei ¼ ½T iðθÞ − 2γsin2θD2
i ðθÞ� ~n3 þ sgnðg2Þ ~n2CiðθÞ: ð11Þ

The phase diagram can be presented in the parameter
space ( ~μ; γ) and the phases are characterized by
θ ∈ ½−π=2; π=2� and ~n. One can easily see that in the
high-density regime ~ΩTðSÞ is dominated by the term
½T TðSÞðθÞ − 2γsin2θD2

TðSÞðθÞ� ~n3, whereas the two-body

contact interaction, i.e., the term containing CTðSÞðθÞ,
becomes irrelevant [43]. In this case the T phase has a
lower ~Ω than the S phase, and we obtain the same stability
condition as in the case of g2 ¼ 0. Numerically, we find that
the phase diagram for g2 > 0 contains only a stable U state
at γ < γc and the region of collapse for γ > γc.
The situation is quite different for g2 < 0. The phase

diagram is shown in Fig. 1 where all continuous curves
correspond to the variational results and all symbols to the
exact numerical solution of the GP equation. Let us first
discuss the variational results. The dashed curves mark the
U-Tθ<0 and U-Tθ>0 transitions, which occur for ~μ < 3=2
and ~μ > 3=2, respectively. These are first-order transitions,
which weaken on approaching the point ~μ ¼ 3=2, γ ¼ 2=3
(black dot). The same holds for the dotted curves, which
correspond to the transitions from the T phases to the S
phase. The black dot thus stands as a four-critical point
and it is the only place in the phase diagram where the
transitions are second order and occur when the roton
minimum touches zero. In this case the grand potential
~Ω ¼ constþOðθ4Þ; i.e., the terms ∝ θ2 and ∝ θ3 are
absent.
The region on the left of the black solid curve in Fig. 1

is the vacuum state: ~n ¼ 0, Ω ¼ 0. Directly on the curve,
vacuum can coexist with matter that has a finite density
and zero pressure. We thus are dealing with a self-trapped
droplet state [44]. With increasing γ, the vacuum curve
eventually bends towards negative ~μ and tends to the
variational collapse line γ ≈ 1.4 (not shown).

By solving the GP equation numerically we observe that
the overall structure of the phase diagram is well captured
by the variational Ansätze (7) and (8). Close to the four-
critical point the agreement is quantitative, which is
generally expected in the regions where θ ≪ 1. Far from
this point we see that the exact collapse line moves to
γ ≈ 0.88 (crosses in Fig. 1) and the vacuum curve (empty
orange circles) bends towards negative ~μ faster than its
variational version. The rest of the symbols in Fig. 1 are
inside the U phase (filled circles), Tθ<0 phase (down
triangles), Tθ>0 phase (up triangles), and S phase (squares).
We see that the actual U-Tθ<0 phase boundary is well
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FIG. 1 (color online). Phase diagram for g2 < 0. Continuous
curves correspond to transitions between different phases ob-
tained from the variational Ansätze (7) and (8). Increasing γ one
passes the U-T transition (dashed), then the T-S transition (lower
dotted curve), and the S-T transition (upper dotted curve). To the
left of the solid black curve the ground state of the system is
vacuum. The black dot is the four-critical point for the U, S, and
two T phases. The symbols indicate our numerical results: the
filled circles are inside the U phase, the downward and upward
pointing triangles are inside the Tθ<0 and Tθ>0 phases, respec-
tively, and the squares are in the stripe phase. The empty circles
are on the vacuum-stripe line and the crosses are at the collapse
instability border. The color-coded pictures show density profiles
corresponding to the symbols in the phase diagram put in frames:
the upper set (violet frame) contains three points of the Tθ>0

phase at γ ¼ 0.8, the middle set (green frame) shows one point
in the S phase and two points in the hexagonal Tθ<0 phase at
γ ¼ 0.6, and the lower set (gray frame) corresponds to the six
points at γ ¼ 0.5.

PRL 115, 075303 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

075303-3



described by the variational method, but one can notice
a move of the S phase upwards and towards negative ~μ.
In fact, the vacuum-S-Tθ>0 tricritical point moves to
~μ ≈ −1.27, γ ¼ 0.78 (outside of the plot).
In Fig. 1 we also show density profiles corresponding to

the points enclosed by rectangular frames in the phase
diagram. The blue and yellow colors stand for minima and
maxima of the density. Without this rescaling the contrast,
for instance, in the lowest rightmost picture would be very
weak. However, one can clearly distinguish smooth density
profiles, which can be described by a few harmonics in the
spirit of Eqs. (7) and (8), and sharper profiles (as one moves
further away from the four-critical point) requiring more
harmonics or a different Ansatz. The spatial coordinates
have also been rescaled (except for the upper set in the
violet frame) because the wave vector km changes very
strongly from point to point.
To the right of the vacuum curve (empty circles in Fig. 1)

the pressure is P ¼ −Ω > 0 and, therefore, this region of
the phase diagram requires an external trapping. In Fig. 2
we present the exact GP result for an isotropically trapped
gas with g2 < 0, γ ¼ 0.575, the global chemical potential
~μ ¼ 0.6, and trap frequency ~ω ¼ 0.05 (in units of g22=ℏg3).
The result is consistent with the local density approxima-
tion in which moving from the trap center towards its
edge is equivalent to the trajectory along a horizontal
line in Fig. 1 determined by the local chemical potential
μðrÞ ¼ μ −mω2r2=2. In Fig. 2 one can clearly distinguish
the U phase in the trap center, the transition to the Tθ<0
phase, and eventually to the S phase. As the local chemical
potential decreases, the contrast and the period of the
density modulation increase, which is consistent with the
free space results.

We should point out that first-order transitions involving
density jumps are forbidden in 2D systems with dipolar
interaction tails. The reason is that the surface tension in
between two such phases can have a negative contribution,
which logarithmically diverges with the length of the
interface and can thus overcome the positive local scale-
independent contribution [45] (see also Ref. [20]).
This means that the first-order transition curves that we
describe here become (narrow) regions of intermediate
“microemulsion” phases [45]. It is argued [20,46] that the
observation of these phases requires exponentially large
system sizes, which are likely much larger than the size of a
typical ultracold sample. Nevertheless, we note that already
the simplest vacuum-U interface that we predict in our
dilute weakly interacting system should be a good candi-
date for studying these interfacial effects. However, we
leave this subject for future work.
In conclusion, we have found that a dilute 2D dipolar

Bose gas can reside in a variety of supersolid phases
stabilized by three-body repulsion. Our results represent
a starting point for the analysis of collective modes of
homogeneous, trapped or self-trapped supersolids. The
developed approach can also be employed in the studies
of novel vortex and soliton structures, and in the search for
translationally nonperiodic phases, in particular, density-
disordered superfluid (superglass) phases.
Promising candidates for the creation of such dipolar

Bose gases are (nonreactive) polar molecules in the bilayer
geometry with interlayer tunneling. The validity of the
Hamiltonian (1) requires the tunneling amplitude t be much
larger than the interaction energy per particle (chemical
potential). For the 2D confinement frequency ∼50 kHz
and interlayer spacing λ ≈ 200 nm one has t ∼ 100 nK for
nonreactive NaK molecules. In the region of stability of
supersolid states in the phase diagram in Fig. 1 we have γ in
between 0.3 and 0.85, so that for r� ∼ λ one has the three-
body coupling constant g3 ∼ 2π2ℏ2λ2=m. The characteristic
value of the chemical potential in the stability region is
jμj ∼ g22=g3 (j ~μj ∼ 1) and it can be easily made about 10 nK,
which is much smaller than t. The chemical potential is
related to the 2D density as μ ¼ g2nþ g3n2=2, and for g3
specified above the value jμj ∼ 10 nK corresponds to
n ∼ 5 × 108 cm−2. Therefore, the Kosterlitz-Thouless
critical temperature TKT ¼ πℏ2ns=2m (ns is the superfluid
density just below TKT and in our conditions it is about a
factor of 3 or 4 lower than the total density) will be∼20 nK.
Then, in analogy with spinor Bose gases (see Ref. [47]) for
the supersolid-uniform difference in the interaction energy
per particle of a few nanokelvins the system should Bose
condense to the supersolid state in the region of its stability
shown in Fig. 1. We thus see that the observation of dilute
supersolid states proposed in this Letter is feasible at
temperatures of a few tens of nanokelvins.
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