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We show that a Gaussian process model can be combined with a small number (of order 100) of
scattering calculations to provide a multidimensional dependence of scattering observables on the
experimentally controllable parameters (such as the collision energy or temperature) as well as the
potential energy surface (PES) parameters. For the case of Ar-C6H6 collisions, we show that 200 classical
trajectory calculations are sufficient to provide a ten-dimensional hypersurface, giving the dependence of
the collision lifetimes on the collision energy, internal temperature, and eight PES parameters. This can
be used for solving the inverse scattering problem, for the efficient calculation of thermally averaged
observables, for reducing the error of the molecular dynamics calculations by averaging over the PES
variations, and for the analysis of the sensitivity of the observables to individual parameters determining
the PES. Trained by a combination of classical and quantum calculations, the model provides an accurate
description of the quantum scattering cross sections, even near scattering resonances.
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Reliable scattering calculations of dynamical properties
ofmolecules are required in almost any research field related
to molecular physics. In particular, experiments on colli-
sional cooling of molecules to cold and ultracold temper-
atures [1], chemical reaction dynamics [2], the development
of new pressure standards [3,4], and astrophysics and
astrochemistry [5] rely on accurate calculations of mole-
cular collision cross sections. Currently, there are two
major problems with the ab initio calculations of molecular
dynamics observables. The first problem is the inaccuracy
of the potential energy surfaces (PESs). Unfortunately,
even the most sophisticated quantum chemistry calculations
produce the PES with uncertainties that lead to significant
(and often unknown) errors in the dynamical calculations.
This sensitivity to PES inaccuracies is especially detrimental
for low temperature applications (cold molecules, ultracold
chemistry, astrophysics, and pressure standards) [6–8].
The second problem is related to the numerical complexity
of the quantum dynamics calculations [9,10]. For complex
molecules with many degrees of freedom, accurate dynami-
cal calculations are extremely time consuming and it is
often impossible to compute enough results for accurate
averaging over the collision or internal energies of the
colliding partners.
In the present work we propose a solution to these two

problems. In order to account for the PES uncertainties,
the dynamical results can be averaged over variations of
the PES. If the computed observables are averaged over
variations of each individual PES parameter, producing
an expectation interval of the observables, the ab initio
dynamical calculations can have fully predictive power
(with error bars). However, the outcome of a molecular
collision is generally a complicated function of many
(ten or more) PES parameters. It is impossible to obtain

the dependence of the collision observables on the indi-
vidual PES parameters by the direct scattering calculations.
We show that such a dependence can be obtained by a
combination of a small number (on the order of 100) of
scattering calculations with a Gaussian process (GP) model
[11,12]. We show that the same model can be used to obtain
the accurate dependence of the scattering observables on
the collision or internal energies of the molecules, with a
small number of scattering calculations. The result is an
accurate global dependence of the scattering observables on
the collision energy, internal energy, and every individual
parameter of the PES surface. This global dependence can
be used to average the computed observables over varia-
tions of the individual PES parameters, as well as over the
collision and internal energies in order to produce thermally
averaged observables. It can also be used to analyze the
influence of the individual PES parameters on the scatter-
ing outcome. This makes the model proposed here a unique
tool for the analysis of the effects of the PES topology on
the molecular scattering dynamics.
Widely used in engineering technologies [13,14], the GP

model can be viewed as a technique for interpolation in a
multidimensional space. We choose the GP model because
it is an efficient nonparametric method. There is no need to
fit data by analytical functions so the model is expected
to work for any distribution of scattering observables and
to become more accurate when trained by more computed
observables. Given the scattering observables computed at
a small number of randomly chosen points in the multi-
dimensional parameter space, the GP model learns from
correlations between the values of these scattering observ-
ables to produce a smooth dependence on all the underlying
parameters. As an illustrative example, we consider the
scattering of benzene molecules C6H6 by rare gas (RG)
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atoms He, Ne, Ar, Kr and Xe. The PES surface for
C6H6-RG interactions is characterized by eight parameters.
We consider two scattering observables [15–17]: the
collision lifetimes and the scattering cross sections. We
address the following questions. How many scattering
calculations are sufficient to train a GP model to produce
an accurate global dependence on all the underlying
parameters? Can the GP model be used to make predictions
of the scattering observables for one collision system based
on the known properties of another collision system? Can
the GP model be used to characterize the scattering
observables near quantum resonances?
We consider a scattering observable O as a function of q

parameters described by the vector x. The components
of the vector x ¼ ðx1; x2;…; xqÞ⊤ can be the collision
energy, the internal energy, and/or the parameters repre-
senting the PES. We assume that O is known from a
classical or quantum dynamics computation at a small
number of x values. Our first goal is to construct an efficient
model that, given a finite set of OðxÞ, produces a global
dependence of the scattering observable on x.
We assume that the scattering observable of interest at

any x is a realization of a Gaussian process Fð·Þ, charac-
terized by a mean function μð·Þ, constant variance σ2, and
correlation function Rð·; ·Þ. For any fixed x, FðxÞ is a value
of a function randomly drawn from a family of functions
Gaussian distributed around μð·Þ. Consequently, the multi-
ple outputs FðxÞ and Fðx0Þ at x and x0 jointly follow a
multivariate normal distribution defined by μð·Þ, σ2, and
Rð·; ·Þ [18,19]. We assume the following form for the
correlation function [20–23]

Rðx; x0Þ ¼ exp
�
−
Xq
i¼1

ωijxi − xi0jp
�

ð1Þ

and write

FðxÞ ¼
Xk
j¼1

hjðxÞβj þ ZðxÞ ¼ hðxÞ⊤βþ ZðxÞ; ð2Þ

where h ¼ (h1ðxÞ;…; hkðxÞ)⊤ is a vector of k regression
functions [24], β ¼ ðβ1; β2;…; βkÞ⊤ is a vector of unknown
coefficients, and Zð·Þ is a Gaussian random function with
zero mean. The problem is thus reduced to finding β, p,
and Ω ¼ ðω1;ω2;…;ωqÞ⊤.
We spread n input vectors x1;…; xn evenly throughout

a region of interest and compute the desired observable O
at each xi with a classical or quantum dynamics method.
The outputs of a GP at these points Yn ¼ ðFðx1Þ;
Fðx2Þ;…; FðxnÞÞ⊤ follow amultivariate normal distribution
with the mean vector Hβ and the covariance matrix σ2A.
Here,H is a n × k design matrix with the ith row filled with
the k regressors h1ðxiÞ; h2ðxiÞ;…; hkðxiÞ at site xi, andA is
an n × n matrix with the elements Aði; jÞ ¼ Rðxi; xjÞ.
Given Ω, the maximum likelihood estimators of β and σ2

have closed-form solutions [11]

β̂ðΩÞ ¼ ðH⊤A−1HÞ−1H⊤A−1Yn; ð3Þ

σ̂2ðΩÞ ¼ 1

n
ðYn −HβÞ⊤A−1ðYn −HβÞ: ð4Þ

To find the maximum likelihood estimator of Ω, we fix p
and maximize the log-likelihood function

logLðΩjYnÞ ¼ −
1

2
½n log σ̂2 þ logðdetðAÞÞ þ n� ð5Þ

numerically by an iterative computation of the determinant
jAj and the matrix inverse A−1.
The goal is to make a prediction of the scattering

observable at an arbitrary x ¼ x0. Because the values
Y0 ¼ Fðx0Þ at x0 and the outputs at training sites are jointly
distributed, the conditional distribution of possible values
Y0 ¼ Fðx0Þ given the values Yn is a normal distribution
with the conditional mean and variance

mðx0Þ� ¼ hðx0Þ⊤βþA⊤
0 A

−1ðYn −HβÞ; ð6Þ

σ�2ðx0Þ ¼ σ2ð1 −A⊤
0 A

−1A0Þ; ð7Þ

whereA0 ¼ (Rðx0; x1Þ; Rðx0; x2Þ;…; Rðx0; xnÞ)⊤ is speci-
fied by the now known correlation function Rð·jΩ̂Þ.
Equation (6) provides the GP model prediction for the
value of the scattering observable at x0.
To illustrate the applicability and accuracy of the GP

model, we first compute the collision lifetimes of benzene
molecules with RG atoms [25–27]. We use the classical
trajectory (CT) method described in Ref. [25]. As shown in
Ref. [28], the C6H6-RG PES can be expressed as a sum
over terms describing the interaction of the RG with the
C − C and C − H bond fragments, characterized by eight
parameters. We first fix the PES parameters to describe
the C6H6-Ar system and focus on the dependence of the
lifetimes on two parameters: the collision energy E and
the rotational temperature Tr. Figure 1 shows the results
of the CT calculations, illustrating that the collision lifetime
exhibits an inverse correlation with E, while no apparent
correlation with Tr. Figure 1(c) shows the global
surface of the lifetime as a function of E and Tr obtained
from the GP model with h1 ¼ 1, hi>1 ¼ 0, and p set to
1.95. To quantify the prediction accuracy of the GP model,
we calculate the errors εE ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1=nÞPn

i¼1ðyi − ŷiÞ2
p

and
εS ¼ εE=ðymax − yminÞ, where yi are the computed values
and ŷi are the GP model predictions. For the model
with only 20 scattering calculations used as training points,
εE ¼ 9.36 ps and εS ¼ 7.93%. With the number of the
scattering calculations increased to 50, the errors decrease
to εE ¼ 5.17 ps and εS ¼ 4.38%.
The scattering calculations presented in Figs. 1(a) and

1(b) cannot be interpreted to assume any simple functional
form. In addition, the vastly different gradients of the Tr

PRL 115, 073202 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

073202-2



and E dependence may make the conclusions based on
calculations at fixed values of one of the parameters
misleading. In contrast, the surface plot in Fig. 1(c) clearly
illustrates that the collision lifetimes decrease monotoni-
cally with both Tr and E. The effect of the rotational
temperature is much weaker especially when E > 5 cm−1
and there is no strong two-way interaction between Tr and
E. The GP model surface can be used to evaluate thermally
averaged collision lifetimes by integrating the E depend-
ence at a given Tr.
The GP model can be extended to multiple collision

systems for the predictions of the collision properties of a
specific collision system based on the known collision
properties of another system. To illustrate this, we consider
the lifetimes of the long-lived complexes formed by
benzene in collisions with the RG atoms He, Ne, Ar, Kr
and Xe. As the collision system is changed from the
C6H6-He system to the C6H6-Xe system, there are two
varying factors that determine the change of the collision
dynamics: the reduced mass and the PES.
As before, we use the GP model FðxÞ ¼ β þ ZðxÞwith x

now representing the atomic mass μA and the interaction
strength De at the global minimum of the atom-molecule

PES obtained by scaling the Ar-C6H6 PES. We fix Tr ¼
4 K and E ¼ 4 cm−1, and compute the collision lifetimes
at 40 randomly chosen points in the interval of μA and
De ½4 g=mol; 130 g=mol� × ½80 cm−1; 520 cm−1�, which
covers all of the RG-C6H6 systems. These 40 calculation
points are then used to train the GP model to produce the
surface plot shown in Fig. 1(d). The error εS of the surface
is 5.09%. The plot reveals that increasing both μA and De
enhances the collision lifetimes and that the reduced-mass
dependence of the collision lifetimes is very weak com-
pared to the dependence on the interaction strength.
The GP model can be exploited to explore the role of the

individual PES parameters on the observables. To illustrate
this, we now consider that x contains eight parameters
giving the analytical form of the RG-C6H6 PES [28], in
addition to E and Tr. We calculate the lifetimes at 200
randomly selected points in this parameter space and use
these points to train the GP model. Figure 2 compares the
predicted values with the calculated values for another set
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FIG. 1 (color online). (a),(b) The lifetime dependence on the
rotational temperature and collision energy for C6H6-Ar colli-
sions. (c) The surface produced by the GP model. The lines
connect the values (circles) computed from the classical trajec-
tories with the values predicted by the GP model. (d) The surface
produced by the GP model for C6H6-RG collision lifetimes
versus the atomic mass and the PES depth for Tr ¼ 4 K and
E ¼ 4 cm−1. The surface (c) is produced with only 20 scattering
calculations on input and has the normalized error εS < 8%. The
surface (d) is produced with 40 scattering calculations and has the
error εS ¼ 5.09%.
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FIG. 2 (color online). Accuracy of the GP model with variable
PES parameters for the prediction of the collision lifetimes. The
scatter plot compares the predicted values with the computed
values. The error of the GP model is the deviation of the points
from the diagonal line. This GP model is trained by only 200
scattering calculations, enough to produce a ten-dimensional
hypersurface with the error εS ¼ 4%. Left inset: energy depend-
ence of the collision lifetime for the Ar-C6H6 system with the
error interval obtained by varying all the individual PES
parameters by �3%. Right inset: relative effect of the variation
of Tr, E, and the PES parameters on the collision lifetimes. The
filled area of the bars shows the uncorrelated contribution of the
corresponding variable and the open area shows the effect that
depends on one or more other variables.
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of 70 randomly selected points. The plot corresponds to the
model error εS ¼ 4%.
The ten-parameter GP model contains a wealth of infor-

mation on the dependence OðxÞ. For example, one can
perform a sensitivity analysis by using the functional
analysis of variance decomposition [29–31] to determine
which of the PES parameters has the strongest impact on
the observable (right inset of Fig. 2). Of the eight PES
parameters, the location of the potential well due to the
interactions of the RG with the C − C bonds for the parallel
approach [28] is the most important factor determining
the collision lifetime. The model can also use be used to
compute the uncertainties due to global variation of the
PES. Figure 2 (left inset) shows the interval of the lifetimes
obtained by the simultaneous �3% variation of all eight
PES parameters.
We now consider the applicability of the GP model to

quantum scattering calculations. The quantum results are
often affected by resonances [2,32], leading to wild varia-
tions of the scattering observables in a small range of the
underlying parameters. If applied directly to such a case,
the GP model is unstable because the steep variation of
the correlations leads to singularities in A−1 [33]. This is
illustrated in Fig. 3, showing the GP model predictions
trained directly by 60 quantum calculations of cross sections
for rotationally inelastic He-C6H6 scattering, randomly
chosen at E between 1 and 10 cm−1. The instability of
theGPmodel arises from thewild variations of the scattering
cross sections near resonances. We repeated these calcu-
lations for the elastic and state-resolved rotationally inelastic

cross sections shown in Figs. 4(a)–4(c) of Ref. [27]. In
each case, we found that the wild variation of the quantum
results leads to unstable GP model predictions.
However, the GP model can be extended to model the

time-consuming quantum scattering calculations with the
help of efficient classical dynamics calculations. To do this,
we introduce a more complex GP as [34]

Eð·Þ ¼ ρFð·Þ þ Gð·Þ þ ε; ð8Þ
where Fð·Þ and Gð·Þ are independent Gaussian random
functions with Gð·Þ characterizing the difference between
the CT and quantum mechanical (QM) calculations and
effectively describing the inaccuracy of the classical tra-
jectory method. The calculations are performed in two
steps. First, the CT calculations are used to train the GP
model Fð·Þ. In the second step, the QM and CT calculations
are used together to train the model Gð·Þ in Eq. (8), using
the parameters of Fð·Þ and treating ρ and ε as variable
parameters. This fixes the models Fð·Þ andGð·Þ as well as ρ
and ϵ.
The accuracy of this combined quantum-classical model

is illustrated in Fig. 3, showing that the model provides
an accurate energy dependence of the cross sections, even
near scattering resonances. The CT calculations in a two-
function model (8) stabilize the model, removing the errors
arising from the resonant variation of the quantum results.
We applied the two-step model (8) to the calculations for
the elastic and state-resolved rotationally inelastic cross
sections shown in Figs. 4(a)–4(c) of Ref. [27] and found a
similar improvement in each case.
In summary, we have shown that a Gaussian process

model combined with a small number of scattering calcu-
lations can be used to obtain an accurate multidimensional
dependence of the scattering observables on the experi-
mentally controllable parameters and the PES parameters.
Specifically, we showed that the GP model trained only by
20 CT calculations produces a dependence of the C6H6-Ar
collision lifetimes on the collision energy and the rota-
tional temperature of benzene, with the normalized error
εS < 8%. Trained by 200 calculations, the GP model
produces a ten-dimensional dependence of the collision
lifetimes on the collision energy, the rotational temperature,
and eight individual PES prameters, with the error
εS < 4%. We have introduced a hybrid GP model that
can be trained by a combination of classical and quantum
dynamics calculations in order to model the quantum
results. We showed that this model works even in the
vicinity of quantum scattering resonances, where the direct
fit of the quantum results by means of a GP model is
unstable. The models described here are expected to find
a wide range of applications, from fitting the interaction
potentials by solving the inverse scattering problem to
analyzing the dependence of scattering observations on
external parameters and to calibrating the accuracy of the
scattering calculation methods. For example, the inverse
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FIG. 3 (color online). GP models (curves) of quantum scatter-
ing cross sections (symbols) for C6H6-He collisions. The blue
dashed line represents the results of the GP model (6) trained by
the quantum calculations. The red solid line represents the
predictions of the GP model (8) trained by a combination of
classical and quantum results. The CT results stabilize the GP
model predictions of the quantum calculations. The models are
trained by the points represented by squares. The circles are used
to illustrate the accuracy.
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scattering problem can be approached with the help of
Eq. (8), where Fð·Þ is parametrized by unknown PES
parameters and Eð·Þmodels the experimental data. The best
estimates of the unknown PES parameters can then be
found by a Markov-chain Monte Carlo method [35], in a
procedure similar to one recently applied in Ref. [36].
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