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We demonstrate rapid loading of a small array of optical tweezers with a single 87Rb atom per site.
We find that loading efficiencies of up to 90% per tweezer are achievable in less than 170 ms for traps
separated by more than 1.7 μm. Interestingly, we find the load efficiency is affected by nearby traps and
present the efficiency as a function of the spacing between two optical tweezers. This enhanced loading,
combined with subsequent rearranging of filled sites, will enable the study of quantum many-body systems
via quantum gas assembly.
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A frontier in atomic physics is the study of quantum
many-body physics on a microscopic scale. Recent experi-
ments have shown the power of microscopy of degenerate
quantum gases in optical lattices [1,2]. An exciting prospect
is not only imaging quantum gases, but assembling them
into a well-known initial configuration from single-atom
building blocks and then observing the resulting dynamics
with single-atom resolution. Wavelength-scale optical
dipole traps, or optical tweezers, are an attractive platform
for control of neutral atoms because they allow reposition-
ing of the atoms after state preparation and site-resolved
imaging. Using optical tweezers, long-range interactions
between neutral atoms have been harnessed via Rydberg
blockade [3–5], and it is now possible to observe controlled
interactions and interference between bosonic and fer-
mionic atoms placed individually in their motional ground
state [6–8]. While optical tweezer traps can be scaled to
arrays [9–12], realizing an ordered array with a single atom
per trap is difficult and is a problem of long-standing
interest [13–16].
Early experiments with optical tweezers demonstrated

sub-Poissonian atom-number statistics using light-assisted
collisions that rapidly expel pairs of atoms, a process
known as collisional blockade [17–20]. This has become
a reliable method to isolate single atoms, as well as the
basis for parity imaging in quantum-gas microscopes
[1,2,17]. However, the collisional blockade also limits
loading efficiencies to approximately 50%, making the
probability to uniformly fill large arrays prohibitively small
[18–20].
Careful studies of light-assisted collisions in optical

dipole traps hold promise for realizing deterministic load-
ing of arrays of atoms [16,21]. Light-assisted collisions are
successfully described by transitions between molecular
potentials that become resonant with the light at specific
interatomic separations, RC [Fig. 1(a)] [22]. In the case of
light that is red detuned from the bare atomic transition, the

atoms associate to an attractive potential and can gain a
large kinetic energy, leading to loss of both atoms from the
trap. Conversely, when the light is blue detuned, the atoms
associate to a repulsive potential where the maximum
kinetic energy gained is set by the detuning [23]. This
control has been used to preferentially expel single 85Rb
atoms from a trap, enabling the isolation of single atoms
with high probability [16,21]. However, open questions
have been whether this technique can be extended to
efficiently load arrays of traps or be adapted to atomic
species with a different hyperfine structure.
Here, we report near-deterministic loading of single 87Rb

atoms that is more rapid than previous realizations and
show that this loading can be used to prepare a uniformly
filled array of traps. This technique realizes a 2 × 2 array of
atoms in optical tweezers in more than 60% of experimental
runs [Fig. 1(d)]. Further, we study how close two optical
tweezers can be loaded without deleterious effects. To
enable the creation of closely spaced atom arrays, we use
tight optical tweezers that have a volume more than an
order of magnitude smaller than was used in previous work.
This causes the collisional dynamics to occur on a much
faster time scale [18], which prevents initially trapping
many atoms in a single tweezer. Hence, in our method a set
of collisional beams are applied in conjunction with
loading from a magneto-optical trap (MOT). Despite this
difference, we find the optical detunings and powers
required are similar to previous work with 85Rb [16,21].
The experimental apparatus generates optical tweezers

by focusing λ ¼ 852 nm light to a 1=e2 radius of w0 ¼
0.71 μm [7,24,25]. Arrays of optical tweezers are created
by generating multiple first-order deflections in each of two
acousto-optic modulators (AOMs), which are oriented to
produce deflections along two orthogonal directions (e.g.,
vertical and horizontal) transverse to the beam propagation
axis. In our MOT, we combine a magnetic field gradient
with three beams that are each retroreflected in the σþ − σ−
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polarization configuration and contain “cycling” light,
which is 25 MHz red detuned of the free-space D2 F ¼
2 → F0 ¼ 3 transition [Fig. 1(b)]; two of the beams also
contain “repump” light, which is resonant with the free-
space D2 F ¼ 1 → F0 ¼ 2 transition.
In our enhanced loading procedure, our optical tweezers

are overlapped with the MOT along with two “collisional
beams” [Fig. 1(b)]: The “795 beam” is blue detuned from
the trap-shifted D1 F ¼ 1 → F0 ¼ 2 transition and drives
the blue-detuned light-assisted collisions. The “2 − 20”
beam is near resonant with the trap-shifted D2 F ¼ 2 →
F0 ¼ 2 transition and quickly pumps trapped atoms to the
F ¼ 1 manifold. After loading the MOT for 110–135 ms

with the collisional beams on, we turn off the magnetic-
field gradient and zero the magnetic field, while keeping
only the collisional beams on for an additional 35 ms,
which ensures there are never two atoms in the trap after the
loading procedure. To give the colliding atoms just enough
kinetic energy for one atom to escape from the trap, the 795
beam should be detuned by approximately the trap depth
(in units of h). We find it is important to have a large trap
depth (h × 73 MHz for these data) to overcome single-
particle loss due to higher scattering rates at smaller 795
beam detunings.
Atoms are detected via the fluorescence collected during

25 ms of polarization-gradient cooling (PGC) in the trap
[26]. The histogram in Fig. 1(c) depicts the number of
photons detected on the highlighted pixel in Fig. 1(d) over
2000 runs of the experiment. The two peaks in the
histogram correspond to runs with zero (100 photons)
and one (430 photons) atom in the trap, indicating one atom
in ð88.7� 0.4Þ% of runs. There are never two atoms
present in the trap, as indicated by the lack of images
with more than 550 photons detected. The collisional beam
parameters used to achieve this result are given in
Table I. For comparison, single atoms can be loaded into
our h × 23 MHz depth trap via PGC in 63% of attempts,
resulting in the loading distribution shown by the red bars
in Fig. 1(d) for a 2 × 2 array of traps [6,20,26].
The dependence on the 795 beam detuning is shown in

Fig. 2(a). The detuning is calibrated relative to the trap-
shifted transition, which is approximately 115 MHz blue of
the free-space resonance. Near resonance, the large scatter-
ing rate causes rapid single-atom loss and the load
probability drops. The light-blue band depicts the range
of detunings used for enhanced loading, while the green
dashed line represents the trap depth (in units of h). The use
of detunings smaller than the trap depth is expected. It is
unlikely for both atoms to be at the bottom of the trap prior
to colliding and thus less energy is required to remove one
atom. The loading efficiency decreases at larger detunings
because the energy gained becomes large enough for both
atoms to be kicked out in a single collision. The 2 − 20
beam should be resonant with the trap-shifted transition,
but the loading efficiency is not particularly sensitive to the
exact detuning except for a rapid drop-off (due to single-
particle heating) as the beam is tuned red of the transition.

FIG. 1 (color online). Enhanced loading and beam schematic.
(a) Light-assisted collisions for blue-detuned light (top) and red-
detuned light (bottom). As the atoms approach RC in the ground-
state jS1=2 þ S1=2i potential, the light becomes resonant with
excitation to the repulsive (attractive) jS1=2 þ P1=2i molecular
potential. (b) Level diagram showing the relevant levels of 87Rb
and the free-space (left) or trap-shifted (right) frequencies
required for enhanced loading (level spacings not to scale).
(c) An average of many images of a single tweezer at full
resolution. Histogram showing the number of photons detected
on the highlighted binned-pixel after the 155 ms enhanced
loading procedure. (d) A single image of four atoms in an array
of four optical tweezers separated by 4.18 μm along each
dimension. Comparison of loading probability in an array of
four tweezers for loading using PGC (red bars) and the enhanced
loading procedure (blue bars).

TABLE I. Collisional beam parameters used for loading the
2 × 2 array of optical tweezers shown in Fig. 1(d). Representative
saturation intensities for these transitions are between 3 and
5 mW=cm2 [27].

Parameter 795 beam 2-20 beam

Detuning δ ¼ þ50.2 MHz +8.6 MHz
Intensity 40 mW=cm2 14 mW=cm2

Polarization linear (π) lin⊥lin (unpolarized)
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Theþ8.6 MHz detuning (Table I) serves as a buffer against
slow drifts in the light-shifted resonance without degrada-
tion in the peak loading efficiency. However, we find that
the beam intensities required for both of the collisional
beams are significantly higher than one might expect, i.e.,
well above the saturation intensity for 87Rb. For example,
we observe that reducing the intensity of either beam by a
factor of 4 reduces the load probability to 70% or less.
We found that the polarization of the collisional beams

did not have a significant effect on the loading efficiency,
but we indicate those used for our data in Table I [21].
Because there is no quantization axis during the loading,
the polarization is not well defined with respect to the
atoms. Hence, we define π polarization to be linearly
polarized along the optical tweezer axis (the axis of
propagation of the trapping light), and this is the polari-
zation used for the 795 beam. The 2 − 20 beam is retro-
reflected in a lin⊥lin configuration, with the beams
crossing the traps at roughly 45° to the tweezer axis,

giving projections onto all polarizations. We observe that
the loading efficiency is independent of whether the 2 − 20
light is retroreflected or in a single-pass configuration.
This indicates that the 2 − 20 light is not cooling the atoms
via the lin⊥lin polarization configuration.
Finally, we show the loading efficiency as a function of

the total length of the loading procedure, which starts
when the light is first turned on and ends before imaging, in
Fig. 2(b). The load time here is likely mainly limited by the
time required for the MOT to achieve a sufficient density, as
evidenced by our observation of similar required time
scales for typical loading [6]. And hence, it is likely that
improving the MOT loading rate (e.g., by using a different
beam geometry) would shorten the total loading time.
When applying the enhanced loading protocol to a

tweezer array, we can observe a reduction in the load
efficiency of each tweezer. To study this effect, we measure
the loading efficiency as a function of the spacing between
two optical tweezers a [Fig. 3(a)]. The points connected by
the solid light-blue line depict the measured load efficiency
using collisional beam parameters optimized for tweezers at
a separation of a ¼ 4.18 μm; these isolated-tweezer beam
parameters are the same as those given in Table I, except
with a larger 795 beam detuning of δ ¼ þ69.4 MHz.
The points connected by the dashed dark-blue line indicate
the highest loading efficiencies achieved by optimizing the
collisional beam parameters at each tweezer separation. As a
guide to the eye, the dashed black line indicates a loading
probability of 90%. The insets depict the total potential of
two Gaussian tweezers with w0 ¼ 0.71 μm and a ¼ 1.46
and 4.18 μm. Notice that the reduced load efficiency occurs
for values of a where the barrier between the two wells is
lowered.
To gain further insight into the reduced loading prob-

ability, we perform a separate experiment where we
initialize two atoms in the right tweezer (by combining
two traps with a single atom each, as determined by post
selection). We apply the collisional beams to the pair of
atoms for 35 ms, which should be sufficient time to ensure
that the atoms do not remain in the same trap, but also
means that multiple light-assisted collisions could occur.
This experiment allows us to observe the resulting trap
occupancies after collisions between two atoms in the
presence of a nearby tweezer. The cartoons above the plot
in Fig. 3(b) depict measured outcomes: A single atom
remaining in the right well, one atom in each well, and a
single atom remaining in the left well. In addition, two-
atom loss can occur. The solid purple line is the sum of the
first two, which both result in a single atom in the right
well; this is the closest analog to load efficiency.
Using the outcome probabilities from Fig. 3(b), and

assuming the effects of collisions that do not remove an
atom are negligible, we perform a simple Monte Carlo
simulation to estimate the expected loading efficiency. The
results of this simulation [gray band in Fig. 3(a)], exhibit

(a)

795 Beam Detuning (MHz)

(b)

Total Load Time (ms)

FIG. 2 (color online). Loading an array of optical tweezers.
(a) Loading probability as a function of the 795 beam detuning
for each of the four wells in the 2 × 2 array shown in Fig. 1(d);
each shape corresponds to data from one of the four wells, shown
individually to demonstrate the consistency. The green dashed
line is the trap depth (in units of h). The light-blue band
represents the range of detunings used for enhanced loading.
(b) Loading probability as a function of the total length of the
enhanced loading procedure. Notice the rapid increase in the load
probability as the MOT density increases, saturating around 90%
in under 170 ms. All of the data points correspond to the loading
probability from 200 repetitions of the loading procedure; we
show a single representative error bar (standard error in the
measurement), which is indicated in black, on the fifth data point
in each plot.
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the same character as the measured loading data. The
importance of this simulation is that it demonstrates that
atoms moving between the wells can affect the final loading
probabilities. We also see that the numbers it gives are
reasonable: The simulated load efficiency is between the
loading measured with the same collisional beam param-
eters (solid light-blue line) and the highest achievable
loading rate (dashed dark-blue line) and the addition of
the magnetic field gradient and MOT light during load
could alter the outcome probabilities. While we cannot
exclude the possibility that the reduced loading efficiency is
due to proximity between the atoms themselves (e.g., due
to expelled atoms colliding with atoms in nearby traps), our

data are consistent with this reduction being solely due to
the deformation of the combined potential leading to a
higher probability of atoms moving between wells. Thus, it
is possible that atoms could be efficiently loaded into
potentials separated by less than 1.7 μm, provided the
potential barrier between neighboring traps is large enough
that they are effectively independent traps.
The loading procedure presented already makes larger-

scale experiments in optical tweezers feasible, especially
when combined with trap rearrangement based on occu-
pancy [13,14]. But it is still relevant to ask what would
improve this loading efficiency. Using a larger trap depth
will help mitigate two important sources of loss: Single-
atom heating from scattering of the 795 beam and pair loss
due to red-detuned collisions from the MOT light. However
even with larger trap depths, more consistent initial con-
ditions are necessary to achieve the highest possible load
efficiencies [21]. It may be possible to use a form of blue-
detuned Sisyphus cooling as a mechanism to cool single
trapped atoms that does not interfere with the primary light-
assisted collisions in the presence of a second atom [28].
In conclusion, we have demonstrated a loading pro-

cedure that allows for the rapid preparation of uniformly
filled arrays of single neutral atoms and only requires the
addition of two collisional beams. We observed a reduction
in the loading efficiency for optical tweezers in close
proximity, but found that, for isolated potential wells, we
achieve up to 90% loading efficiency per well. This
procedure will not only enable the creation of uniform
atom arrays via optical tweezers, but could also be
applicable to the loading of optical lattices or even nano-
photonic structures [29,30].

We thank Mikkel Andersen and his colleagues for a
helpful discussion, as well as Mike Foss-Feig, Yiheng Lin,
and Randall Ball for useful comments. This work was
supported by the David and Lucile Packard Foundation and
the National Science Foundation under Grant No. 1125844.
C. A. R. acknowledges support from the Clare Boothe Luce
Foundation. N. L. acknowledges support from the
Studienstiftung des deutschen Volkes.

*blester@jila.colorado.edu
†regal@colorado.edu

[1] W. S. Bakr, J. I. Gillen, A. Peng, S. Fölling, and M. Greiner,
Nature (London) 462, 74 (2009).

[2] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I.
Bloch, and S. Kuhr, Nature (London) 467, 68 (2010).

[3] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y.
Miroshnychenko, P. Grangier, and A. Browaeys, Phys.
Rev. Lett. 104, 010502 (2010).

[4] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,
T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev.
Lett. 104, 010503 (2010).

[5] D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys,
and C. S. Adams, Phys. Rev. Lett. 114, 113002 (2015).

(b)

(a)

FIG. 3 (color online). Effect of tweezer spacing on loading.
(a) Maximum loading probability achieved (per tweezer) after
optimizing the loading parameters at each well spacing (dark-
blue dashed line) and the loading probability when using the
isolated-tweezer beam parameters at each spacing (light-blue
solid line) versus the spacing between the center of two tweezers
a. The loading probability calculated from a Monte Carlo
simulation of the loading process (gray band) using the measured
probabilities of the four possible outcomes [three of which are
shown in part (b)] during each collision event and neglecting any
single-particle effects. (b) Controlled experiment studying the
effect of collisional light on two trapped atoms in proximity to a
second trap. Measured probabilities of a single atom remaining in
the right well (dash-dotted green line), one atom remaining in
each well (dashed orange line), a single atom remaining in the left
well (dotted red line), and the total probability for an atom to
remain in the right well (solid purple line) as a function of the
spacing between the optical tweezers.

PRL 115, 073003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

073003-4

http://dx.doi.org/10.1038/nature08482
http://dx.doi.org/10.1038/nature09378
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010502
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1103/PhysRevLett.104.010503
http://dx.doi.org/10.1103/PhysRevLett.114.113002


[6] A. M. Kaufman, B. J. Lester, and C. A. Regal, Phys. Rev. X
2, 041014 (2012).

[7] A. M. Kaufman, B. J. Lester, C. M. Reynolds, M. L. Wall,
M. Foss-Feig, K. R. A. Hazzard, A. M. Rey, and C. A.
Regal, Science 345, 306 (2014).

[8] S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn,
T. Lompe, and S. Jochim, Phys. Rev. Lett. 114, 080402
(2015).

[9] S. Bergamini, B. Darquié, M. Jones, L. Jacubowiez, A.
Browaeys, and P. Grangier, J. Opt. Soc. Am. B 21, 1889
(2004).

[10] B. Zimmermann, T. Müller, J. Meineke, T. Esslinger, and
H. Moritz, New J. Phys. 13, 043007 (2011).

[11] M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang,
L. Isenhower, and M. Saffman, Phys. Rev. A 88, 013420
(2013).

[12] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin,
A. Vernier, T. Lahaye, and A. Browaeys, Phys. Rev. X 4,
021034 (2014).

[13] D. S. Weiss, J. Vala, A. V. Thapliyal, S. Myrgren, U.
Vazirani, and K. B. Whaley, Phys. Rev. A 70, 040302(R)
(2004).

[14] Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster, M.
Khudaverdyan, D. Meschede, D. Schrader, and A.
Rauschenbeutel, Nature (London) 442, 151 (2006).

[15] J. Beugnon, C. Tuchendler, H. Marion, A. Gaëtan, Y.
Miroshnychenko, Y. R. P. Sortais, A. M. Lance, M. P. A.
Jones, G. Messin, A. Browaeys, and P. Grangier, Nat. Phys.
3, 696 (2007).

[16] T. Grünzweig, A. Hilliard, M. McGovern, and M. F.
Andersen, Nat. Phys. 6, 951 (2010).

[17] N. Schlosser, G. Reymond, I. Protsenko, and P. Grangier,
Nature (London) 411, 1024 (2001).

[18] N. Schlosser, G. Reymond, and P. Grangier, Phys. Rev. Lett.
89, 023005 (2002).

[19] A. Fuhrmanek, R. Bourgain, Y. R. P. Sortais, and A.
Browaeys, Phys. Rev. A 85, 062708 (2012).

[20] P. Sompet, A. V. Carpentier, Y. H. Fung, M. McGovern, and
M. F. Andersen, Phys. Rev. A 88, 051401(R) (2013).

[21] A. V. Carpentier, Y. H. Fung, P. Sompet, A. J. Hilliard, T. G.
Walker, and M. F. Andersen, Laser Phys. Lett. 10, 125501
(2013).

[22] J. Weiner, V. S. Bagnato, S. Zilio, and P. S. Julienne, Rev.
Mod. Phys. 71, 1 (1999).

[23] D. Hoffmann, S. Bali, and T. Walker, Phys. Rev. A 54,
R1030 (1996).

[24] C.-Y. Shih and M. S. Chapman, Phys. Rev. A 87, 063408
(2013).

[25] F. Le Kien, P. Schneeweiss, and A. Rauschenbeutel, Eur.
Phys. J. D 67, 92 (2013).

[26] B. J. Lester, A. M. Kaufman, and C. A. Regal, Phys. Rev. A
90, 011804(R) (2014).

[27] D. A. Steck, Rubidium 87D Line Data, available online at
http://steck.us/alkalidata (revision 2.1.4, 23 December
2010).

[28] D. J. Wineland, J. Dalibard, and C. Cohen-Tannoudji, J.
Opt. Soc. Am. B 9, 32 (1992).

[29] C.-L. Hung, S. M. Meenehan, D. E. Chang, O. Painter, and
H. J. Kimble, New J. Phys. 15, 083026 (2013).

[30] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu,
V. Vuletić, and M. D. Lukin, Nature (London) 508, 241
(2014).

PRL 115, 073003 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

073003-5

http://dx.doi.org/10.1103/PhysRevX.2.041014
http://dx.doi.org/10.1103/PhysRevX.2.041014
http://dx.doi.org/10.1126/science.1250057
http://dx.doi.org/10.1103/PhysRevLett.114.080402
http://dx.doi.org/10.1103/PhysRevLett.114.080402
http://dx.doi.org/10.1364/JOSAB.21.001889
http://dx.doi.org/10.1364/JOSAB.21.001889
http://dx.doi.org/10.1088/1367-2630/13/4/043007
http://dx.doi.org/10.1103/PhysRevA.88.013420
http://dx.doi.org/10.1103/PhysRevA.88.013420
http://dx.doi.org/10.1103/PhysRevX.4.021034
http://dx.doi.org/10.1103/PhysRevX.4.021034
http://dx.doi.org/10.1103/PhysRevA.70.040302
http://dx.doi.org/10.1103/PhysRevA.70.040302
http://dx.doi.org/10.1038/442151a
http://dx.doi.org/10.1038/nphys698
http://dx.doi.org/10.1038/nphys698
http://dx.doi.org/10.1038/nphys1778
http://dx.doi.org/10.1038/35082512
http://dx.doi.org/10.1103/PhysRevLett.89.023005
http://dx.doi.org/10.1103/PhysRevLett.89.023005
http://dx.doi.org/10.1103/PhysRevA.85.062708
http://dx.doi.org/10.1103/PhysRevA.88.051401
http://dx.doi.org/10.1088/1612-2011/10/12/125501
http://dx.doi.org/10.1088/1612-2011/10/12/125501
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/PhysRevA.54.R1030
http://dx.doi.org/10.1103/PhysRevA.54.R1030
http://dx.doi.org/10.1103/PhysRevA.87.063408
http://dx.doi.org/10.1103/PhysRevA.87.063408
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1140/epjd/e2013-30729-x
http://dx.doi.org/10.1103/PhysRevA.90.011804
http://dx.doi.org/10.1103/PhysRevA.90.011804
http://steck.us/alkalidata
http://steck.us/alkalidata
http://dx.doi.org/10.1364/JOSAB.9.000032
http://dx.doi.org/10.1364/JOSAB.9.000032
http://dx.doi.org/10.1088/1367-2630/15/8/083026
http://dx.doi.org/10.1038/nature13188
http://dx.doi.org/10.1038/nature13188

