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Consistent formulations of relativistic viscous hydrodynamics involve short-lived modes, leading to
asymptotic rather than convergent gradient expansions. In this Letter we consider the Müller-Israel-Stewart
theory applied to a longitudinally expanding quark-gluon plasma system and identify hydrodynamics as a
universal attractor without invoking the gradient expansion. We give strong evidence for the existence of
this attractor and then show that it can be recovered from the divergent gradient expansion by Borel
summation. This requires careful accounting for the short-lived modes which leads to an intricate
mathematical structure known from the theory of resurgence.
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Introduction.—The past 15 years have witnessed the
rising practical importance of relativistic viscous hydro-
dynamics. One reason for this is the success of hydro-
dynamic modeling of quark-gluon plasma (QGP) in heavy
ion collision experiments at the RHIC and the LHC and the
realization that QGP viscosity provides a crucial probe of
QCD physics [1]. Another motivation is the relation
between black holes and fluids, which originated in the
1970s as the rather mysterious black hole membrane
paradigm [2]. With the advent of holography, this con-
nection has been promoted to a precise correspondence [3]
shedding light on both the physics of QGP and liquids in
general, as well as on gravity.
The perfect fluid approximation is widely used in

astrophysics and this theoretical description of relativistic
inviscid fluids is rather well established [4]. On the other
hand, relativistic viscous hydrodynamics is much less well
understood. One of the recent insights is to regard hydro-
dynamics as a systematic gradient expansion, much in the
spirit of low-energy effective field theory [5].
However, the requirement of causality leads to a frame-

work which necessarily incorporates very large momenta
(and frequencies). In all known examples, this is accom-
panied by the appearance of short-lived excitations—
nonhydrodynamic modes. It has recently been shown, in
the context of the AdS=CFT correspondence, that their
presence leads to the divergence of the hydrodynamic
gradient series for strongly coupled N ¼ 4 super Yang-
Mills (SYM) plasma [6]. In view of this, it is not clear
whether or how a naive gradient expansion defines the
theory. This is in fact a fundamental conceptual question
concerning relativistic hydrodynamics as such.
In this Letter we propose a definite answer: since the

nonhydrodynamic modes decay exponentially, the system
relaxes to an attractor regardless of when an initial condition
is set. In the following we consider a simple situation in

which this can be made completely explicit: the Müller-
Israel-Stewart (MIS) theory [5,7,8] specialized to a longitu-
dinally expanding conformal fluid.We show that the attractor
can be determined by relaxation from solutions which take
the formof a transseries. The higher orders of this transseries
are encoded in the divergent hydrodynamic gradient expan-
sion, in line with expectations based on resurgence ideas [9].
Müller-Israel-Stewart theory.—The Landau-Lifschitz

formulation of relativistic viscous hydrodynamics [10]
asserts that the evolution equations for the hydrodynamic
fields—temperature T and flow velocity uμ—are the
conservation equations of the energy-momentum tensor

hTμνi ¼ Euμuν þ PðEÞðημν þ uμuνÞ þ Πμν; ð1Þ

where the shear stress tensor Πμν is given by

Πμν ¼ −ησμν: ð2Þ
From a modern perspective, one could contemplate includ-
ing all possible terms graded by the number of derivatives
of T and uμ. If this is done to a finite order, as in Eq. (2), the
resulting theory will not have a well-posed initial value
problem due to superluminal signal propagation [11–14].
MIS theory resolves this problem by promoting the shear

stress tensor to an independent dynamical field which
satisfies a relaxation-type equation:

ðτΠuα∂α þ 1ÞΠμν ¼ −ησμν þ � � � ; ð3Þ
where τΠ is a phenomenological parameter (the relaxation
time) and the ellipsis denotes several additional terms
whose explicit form can be found in Ref. [5].
Linearization of the resulting theory is causal as long as
TτΠ ≥ η=s. This approach has enjoyed great success in
describing the evolution of QGP [15]. It has also been
obtained as the long-wavelength effective description of
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strongly coupled N ¼ 4 SYM plasma in the framework of
the AdS=CFT correspondence [3,5].
The iterative solution of Eq. (3) generates the gradient

expansion of the shear stress tensor leading to the appear-
ance of an infinite number of terms on the rhs of Eq. (2).
Their coefficients (the transport coefficients of all orders)
are expressed in terms of η and τΠ (and four more
parameters in the general conformal case [5]).
In the language of high energy physics, MIS theory can

be regarded as an UV completion of Landau-Lifschitz
theory. This is in contrast to the standard way of viewing it
as a phenomenological model providing an effective
description of some microscopic system only at late times.
By treating MIS theory as an UV completion, we mean that
we consider a hypothetical physical system such that the
MIS theory describes it also at early times. This could be
the case for systems where the approach to equilibrium is
governed by a purely damped quasinormal mode.
The setup.—To overcome the complexity of the MIS

equations, we focus on the case of Bjorken flow [16],
which, due to a very high degree of symmetry, reduces
them to a set of ordinary differential equations. The
symmetry in question, boost invariance, can be taken to
mean that in proper time-rapidity coordinates τ; y (related
to Minkowski coordinates t; z by t ¼ τ cosh y and
z ¼ τ sinh y), the energy density, flow velocity, and shear
stress tensor depend only on the proper time τ. The MIS
equations then take the simple form

τ_ϵ ¼ −
4

3
ϵþ ϕ; τΠ _ϕ ¼ 4η

3τ
−
λ1ϕ

2

2η2
−
4τΠϕ

3τ
− ϕ; ð4Þ

where the dot denotes a proper time derivative and
ϕ≡ −Πy

y, the single independent component of the shear
stress tensor. The term involving λ1 comes from the elided
terms in Eq. (3); for details, see Ref. [5].
In a conformal theory, ϵ ∼ T4 and the transport coef-

ficients satisfy

τΠ ¼ CτΠ

T
; λ1 ¼ Cλ1

η

T
; η ¼ Cηs; ð5Þ

where s is the entropy density and CτΠ; Cλ1 ; Cη are
dimensionless constants. In the case ofN ¼ 4 SYM theory
their values are known from fluid-gravity duality [3]:

CτΠ ¼ 2 − logð2Þ
2π

; Cλ1 ¼
1

2π
; Cη ¼

1

4π
: ð6Þ

The hydrodynamic attractor.—From Eq. (4) one can
derive a single second order equation for the energy density
or, equivalently, the temperature:

τCτΠ
T̈
T
þ 3τCτΠ

�
_T
T

�2

þ
�
11CτΠ

3T
þ τ

�
_Tþ

−
4Cη

9τ
þ 4CτΠ

9τ
þ 1

3
T ¼ 0: ð7Þ

To simplify the presentation, we have set Cλ1 ¼ 0 in this
equation as well as in Eqs. (9), (10), and (13) below.
To proceed further, it is crucial to rewrite Eq. (7) in first

order form. Introducing the dimensionless variables w and
f (as in Ref. [17]),

w ¼ τT; f ¼ τ
_w
w
; ð8Þ

the MIS evolution equation (7) takes the form

CτΠwff0 þ 4CτΠf2 þ
�
w −

16CτΠ

3

�
fþ

−
4Cη

9
þ 16CτΠ

9
−
2w
3

¼ 0; ð9Þ

where the prime denotes a derivative with respect to w.
Equations (8) and (9) together are equivalent to Eq. (7) as
long as the function wðτÞ is invertible.
At large times (which translate to large w), we expect

universal hydrodynamic behavior [17]. In phenomenologi-
cal analyses of heavy ion experiments, usually based on
MIS theory, hydrodynamic codes are initialized typically at
w ≈ 0.5, which corresponds roughly to a time τ ¼ 0.5 fm
after the collision, with the temperature T ¼ 350 MeV at
the center of the fireball at the RHIC (see, e.g., Ref. [18]).
Equation (9) indeed possesses a unique stable solution
which can be presented as a series in powers of 1=w:

fðwÞ ¼ 2

3
þ 4Cη

9w
þ 8CηCτΠ

27w2
þO

�
1

w3

�
: ð10Þ

This is, in fact, the hydrodynamic gradient expansion.
It is easy to see that linear perturbations around this formal

solution decay exponentially on a time scale set by τΠ:

δfðwÞ ∼ exp

�
−

3

2CτΠ
w

�
w½ðCη−2Cλ1

Þ=ðCτΠÞ�
�
1þO

�
1

w

��
:

ð11Þ
This is precisely the short-livedmode introduced by theMIS
prescription. In the language of the gravity dual to N ¼ 4
SYM theory, this would be an analog of a quasinormalmode
[6,19] whose frequency is purely imaginary.
The presence of this exponentially decaying mode

suggests that Eq. (9) possesses an attractor solution. We
propose that this attractor constitutes the definition of
hydrodynamic behavior. As discussed below, the presence
of this attractor can be inferred without reference to the
gradient expansion, which, as shown in the following
section, is in fact divergent.
The existence of the hydrodynamic attractor is supported

by examining the behavior of generic solutions of Eq. (8),
with initial conditions set at various values of w. As seen in
Fig. 1, a generic solution rapidly decays to the attractor.
Furthermore, the attractor appears to persist even at very
small values of w, where hydrodynamics of finite order
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becomes ill defined. Perhaps unsurprisingly, truncating
Eq. (10) at first or second order gives results distinctly
different from the attractor at very small w. The magnitude
of this difference depends on the values of the transport
coefficients (this point is discussed further in the
Supplemental Material [20]). Assuming N ¼ 4 SYM
parameter values, we see that adopting just the viscous
hydrodynamics constitutive relations provides a remark-
ably good approximation of the attractor for a wide range of
w. In particular, this holds with an error smaller than 10%
for w > 0.5.
Examining the behavior of f for w close to zero, one

finds two solutions, one of which is stable:

fðwÞ ¼ 2
ffiffiffiffiffiffiffiffi
CτΠ

p þ ffiffiffiffiffiffi
Cη

p
3

ffiffiffiffiffiffiffiffi
CτΠ

p þOðwÞ: ð12Þ

By setting the initial value of f at w ≈ 0 arbitrarily close to
Eq. (12), the attractor can be determined numerically with
the result shown in Fig. 1.
Another way of characterizing the attractor is to expand

Eq. (9) in derivatives of f—this is an analog of the slow-roll
expansion in theories of inflation (see, e.g., Ref. [21]). At
leading order one finds

fðwÞ ¼ 2

3
−

w
8CτΠ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64CηCτΠ þ 9w2

q
24CτΠ

: ð13Þ

Continuing this to second order gives an analytic repre-
sentation of the attractor which matches the numerically
computed curve even for w as small as 0.1.
Finally, one can also construct the attractor in an

expansion around w ¼ 0 starting with the fðwÞ given by
Eq. (12). It turns out that the radius of convergence of this
series is finite.
All three expansion schemes described above are

consistent with the numerically determined attractor.

Hydrodynamic gradient expansion at high orders.—In
what follows we focus on the hydrodynamic expansion, the
expansion in powers of 1=w. It is straightforward to
generate the gradient expansion up to essentially arbitrarily
high order (in practice, we chose to stop at 200). The
coefficients fn of the series solution

fðwÞ ¼
X∞
n¼0

fnw−n ð14Þ

show factorial behavior at large n, as seen in Fig. 2. This is
analogous to the results obtained in Ref. [6] for the case of
N ¼ 4 SYM theory.
In view of the divergence of the hydrodynamic expan-

sion, we turn to the Borel summation technique. The Borel
transform of f is given by

fBðξÞ ¼
X∞
n¼0

fn
n!

ξn ð15Þ

and results in a series which has a finite radius of
convergence. Note that in Eq. (15) large w corresponds
to small ξ. To invert the Borel transform, it is necessary to
know the analytic continuation of series (15), which we
denote by ~fBðξÞ. The inverse Borel transform

fRðwÞ ¼
Z
C
dξe−ξ ~fBðξ=wÞ ¼ w

Z
C
dξe−wξ ~fBðξÞ; ð16Þ

whereC denotes a contour in the complex plane connecting
0 and ∞, is interpreted as a resummation of the original
divergent series (14). To carry out the integration, it is
essential to know the analytic structure of ~fBðξÞ.
We perform the analytic continuation using diagonal

Padé approximants [22], given by the ratio of two poly-
nomials of order 100. This function has a dense sequence of
poles on the real axis, starting at ξ0 ¼ 7.21187, which
signals the presence of a cut originating at that point [23].

FIG. 1 (color online). The blue lines are numerical solutions of
Eq. (8) for various initial conditions; the thick magenta line is the
numerically determined attractor. The red dashed and green
dotted lines represent first and second order hydrodynamics.

FIG. 2 (color online). The large order behavior of the hydro-
dynamic series. The slope is consistent with the location of the
singularity nearest the origin, as given by Eq. (17).
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This can be corroborated by applying the ratio method [22],
which allows the estimation of the location and order of the
leading branch-cut singularity by examining the series
coefficients. Specifically, if the function approximated by
Eq. (15) has the leading singularity of the form ðξ0 − ξÞγ ,
then for large n,

fn
fnþ1

¼ ξ0
nþ 1

�
1þ γ þ 1

nþ 1
þO

�
1

n2

��
: ð17Þ

Applying this formula, one finds ξ0 ¼ 7.21181 (which is
consistent with the pattern of poles) and γ ¼ 1.1449.
As we argue in the Supplemental Material [20], the

analytic structure of ~fB must involve further singularities
on the real axis precisely in the following form:

~fBðξÞ ¼ h0ðξÞ þ ðξ0 − ξÞγh1ðξÞ þ ð2ξ0 − ξÞ2γh2ðξÞ þ � � � ;
ð18Þ

where the functions hkðξÞ are analytic and the ellipsis
denotes further singularities at integer multiples of ξ0.
Such branch-cut singularities of ~fB lead to ambiguities in

the inverse Borel transform. Indeed, such a series is not
Borel summable in the usual sense. It is, however, known
that even in such cases a resummation is possible (see, e.g.,
Ref. [24]), but it requires a nontrivial choice of integration
contour. The freedom in the choice of integration contour
leads to complex ambiguities:

δfRðwÞ ¼ eiπkpγw
Z

∞

kξ0

dξe−wξðξ − kξ0ÞkγhkðξÞ; ð19Þ

where p is an odd integer reflecting the choice of Riemann
sheet. For large w this becomes

δfRðwÞ ≈ eiπkpγΓðkγ þ 1Þhkðkξ0Þðw−γe−wξ0Þk: ð20Þ
This ambiguity is a feature of the hydrodynamic series and
its presence is an indication of physics outside the gradient
expansion. We saw in the previous section that there
are nonanalytic, exponentially suppressed corrections to
the hydrodynamic series following from the presence of
the nonhydrodynamic MIS mode. These have precisely the
correct structure to eliminate the k ¼ 1 ambiguity in
inverting the Borel transform. Indeed, comparing
Eq. (20) with Eq. (11), we are led to identify ξ0 with
3=2CτΠ and −γ with ðCη − 2Cλ1Þ=CτΠ. Evaluating these
combinations with parameter values appropriate forN ¼ 4
SYM theory [Eq. (6)] gives agreement to five significant
digits. Both Eq. (20) and Eq. (11) receive corrections in
1=w, and we expect them to match also.
The nonlinear structure of Eq. (9) suggests the presence

of an infinite series of exponential corrections, which are
matched by further branch cuts in Eq. (18). In the following
section we calculate these corrections and give strong
evidence that they conspire to yield an unambiguous,
finite, and real answer for fR, up to a real constant of
integration (see also the Supplemental Material [20]).

Resurgence.—The results presented so far suggest that
Eq. (9) should possess a solution in the form of a transseries
[25]:

fðwÞ ¼
X∞
m¼0

cmΩðwÞm
X∞
n¼0

am;nw−n; ð21Þ

where Ω≡ w−γ expð−wξ0Þ, while c and am;n are coeffi-
cients to be determined by the equation. By direct sub-
stitution, one can check up to high order that all of the
coefficients am;n in Eq. (21) are fixed uniquely apart from
a1;0, which can be absorbed into the constant c.
For each value of m in Eq. (21), the series over n is

expected to be divergent—we have checked this for m ≤ 2.
Applying the Padé-Borel techniques discussed earlier leads
to complex resummation ambiguities for each of these
series. To obtain a meaningful answer, it must be possible
to choose the single complex constant c in such a way that
the result does not depend on the choice of integration
contours and that the imaginary parts cancel.
The key observation is that the ambiguity at the leading

order of the transseries is proportional to Ω, so it can only
be canceled by terms of order m ¼ 1 or higher. This
cancellation determines the constant c,

c ¼ r − eiπγpΓðγ þ 1Þhð0Þ1 ðξ0Þ; ð22Þ
up to an arbitrary real number r, which is the expected
integration constant for the first order differential equation (9).
Resummation.—Having provided strong evidence for the

existence of an unambiguous and physically sensible result
encoded in the transseries, we now invert the Borel sums
for m ≤ 2. For these calculations, we used extended
precision arithmetic (keeping one thousand digits).
Inverting the Borel transform at each order of the

transseries requires performing the integration in
Eq. (16). The analytic continuation by Padé approximants
works well in regions of the complex plane away from
branch-cut singularities, so we take all of the integration
contours to be straight lines at argðξÞ ¼ π=4 (this is
discussed further in the Supplemental Material [20]).
The integrals computed in this way are complex. The
findings of the previous section suggest that by taking
the sum as in Eq. (21) one should be able to choose the
imaginary part of the constant c so that the result is real for
some range of w. This is indeed the case and gives a value
for ImðcÞ consistent with Eq. (22) (with p ¼ −1). A
combined measure of error is the imaginary part of the
result of the resummation—it remains very small (below
0.01% relative to the real part) for w > 0.25.
We compared the result of the resummation with the

numerically computed attractor, which required fitting the
integration constant r ¼ 0.049 [see Eq. (22)]. As illustrated
in the Supplemental Material [20], the generalized Borel
sum of the gradient series indeed follows the attractor. Note
that to match the attractor we need to choose the coefficient
r ≠ −ReðcÞ, while naively one might expect that the
attractor should correspond to omitting the exponential
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terms. This suggests that the resummation of the gradient
series contains exponentially decaying terms which are not
canceled by the exponential terms from higher orders in the
transseries. Consequently, instead of thinking about non-
hydrodynamic modes in terms of perturbations about the
gradient expansion, one should more properly think of
them as perturbations around the hydrodynamic attractor.
Conclusions.—Recent advances in applying the theory

of resurgence to quantum theories [26–31] have motivated
us to rethink the foundational aspects of relativistic hydro-
dynamics. The root of the problem is that causality
precludes us from regarding hydrodynamics as a truncated
gradient expansion, yet the series itself is divergent. We
propose to view hydrodynamics as an attractor which
governs the late time behavior of systems in their approach
to equilibrium. In the context of boost-invariant flow in
MIS theory, we have constructed such an attractor in
several ways which are all consistent with each other.
By identifying the structure of singularities of the

analytic continuation of the Borel transform of the hydro-
dynamic series in terms of nonhydrodynamic degrees of
freedom, we hope that this Letter will provide a useful road
map for understanding the meaning of higher order
gradients in the case of N ¼ 4 SYM theory [6]. From
the point of view of AdS=CFT, the exploratory studies
described here suggest that the geometry constructed in the
gradient expansion of fluid-gravity duality should be
viewed as the leading term of a transseries containing
the effects of quasinormal modes.
From a phenomenological perspective, MIS theory

includes explicitly transport coefficients for terms up to
second order in gradients, but it generates a gradient expan-
sion to all orders. The transport coefficients can only match
real QCD plasma up to second order. One may then wonder
about the effects of all of the higher order terms [32] which
cannot be matched by MIS theory. Our findings suggest that
the attractor which governs its late time behavior is not very
sensitive to the higher order terms (even when the gradient
series is resummed). Thismakes it less surprising to learn that
MIS theory can describe QGP evolution so well.
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