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We derive a new class of one-loop nonrenormalization theorems that strongly constrain the running of
higher dimension operators in a general four-dimensional quantum field theory. Our logic follows from
unitarity: cuts of one-loop amplitudes are products of tree amplitudes, so if the latter vanish then so too will
the associated divergences. Finiteness is then ensured by simple selection rules that zero out tree amplitudes
for certain helicity configurations. For each operator we define holomorphic and antiholomorphic weights,
ðw; w̄Þ ¼ ðn − h; nþ hÞ, where n and h are the number and sum over helicities of the particles created by
that operator. We argue that an operator Oi can only be renormalized by an operator Oj if wi ≥ wj and
w̄i ≥ w̄j, absent nonholomorphic Yukawa couplings. These results explain and generalize the surprising
cancellations discovered in the renormalization of dimension six operators in the standard model. Since our
claims rely on unitarity and helicity rather than an explicit symmetry, they apply quite generally.
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Introduction.—Technical naturalness dictates that all
operators not forbidden by symmetry are compulsory—
and thus generated by renormalization. Softened ultraviolet
divergences are in turn a telltale signof underlying symmetry.
This is famously true in supersymmetry, where holomorphy
enforces powerful nonrenormalization theorems.
In this Letter we derive a new class of nonrenormaliza-

tion theorems for nonsupersymmetric theories. Our results
apply to the one-loop running of the leading irrelevant
deformations of a four-dimensional quantum field theory of
marginal interactions,

ΔL ¼
X
i

ciOi; ð1Þ
where Oi are higher dimension operators. At leading order
in ci, renormalization induces operator mixing via

ð4πÞ2 dci
d log μ

¼
X
j

γijcj; ð2Þ

where by dimensional analysis the anomalous dimension
matrix γij is a function of marginal couplings alone.
The logic of our approach is simple, making no reference

to symmetry. Renormalization is induced by log divergent
amplitudes, which by unitarity have kinematic cuts equal
to products of on-shell tree amplitudes [1]. If any of these
tree amplitudes vanish, then so too will the divergence.
Crucially, many tree amplitudes are zero due to helicity
selection rules, which, e.g., forbid the all minus helicity
gluon amplitude in Yang-Mills theory.
For our analysis, we define the holomorphic and anti-

holomorphic weight of an on-shell amplitude A by

wðAÞ ¼ nðAÞ − hðAÞ; w̄ðAÞ ¼ nðAÞ þ hðAÞ; ð3Þ
where nðAÞ and hðAÞ are the number and sum over
helicities of the external states. (Holomorphic weight is
a generalization of k charge in super Yang-Mills theory,
where the NkMHV amplitude has w ¼ kþ 4.) Since A is

physical, its weight is field reparameterization and gauge
independent. The weights of an operator O are then invari-
antly defined by minimizing over all amplitudes involving
that operator: wðOÞ¼minfwðAÞg and w̄ðOÞ¼minfw̄ðAÞg.
In practice, operator weights are fixed by the leading
nonzero contact amplitude built from an insertion of O,

wðOÞ ¼ nðOÞ − hðOÞ; w̄ðOÞ ¼ nðOÞ þ hðOÞ; ð4Þ
where nðOÞ is the number of particles created by O and
hðOÞ is their total helicity. (By definition, all covariant
derivatives D are treated as partial derivatives ∂ when
computing the leading contact amplitude.) For field oper-
ators we find
O Fαβ ψα ϕ ψ̄ _α F̄ _α _β

h þ1 þ1=2 0 −1=2 −1
ðw; w̄Þ (0, 2) ð1=2; 3=2Þ (1, 1) ð3=2; 1=2Þ (2, 0)

where all Lorentz covariance is expressed in terms of four-
dimensional spinor indices, so e.g., the gauge field strength
is Fα _αβ _β ¼ Fαβϵ̄ _α _β þ F̄ _α _βϵαβ. The weights of all dimension
five and six operators are shown in Fig. 1.
As we will prove, an operator Oi can only be renor-

malized by an operator Oj at one loop if the corresponding
weights ðwi; w̄iÞ and ðwj; w̄jÞ satisfy the inequalities

wi ≥ wj and w̄i ≥ w̄j; ð5Þ
and all Yukawa couplings are of a “holomorphic” form
consistent with a superpotential. This implies a new class of
nonrenormalization theorems,

γij ¼ 0 if wi < wj or w̄i < w̄j; ð6Þ
which impose mostly zero entries in the matrix of
anomalous dimensions. The resulting nonrenormalization
theorems for all dimension five and six operators are shown
in Tables I and II.
Because our analysis hinges on unitarity and helicity

rather than off-shell symmetry principles, the resulting
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nonrenormalization theorems are general. Moreover, they
explain the ubiquitous and surprising cancellations [2] in
the one-loop renormalization of dimension six operators in
the standard model [4–7]. Absent an explanation from
power counting or spurions, the authors of Ref. [2] con-
jectured a hidden “holomorphy” enforcing nonrenormali-
zation among holomorphic and antiholomorphic operators.
We show here that this classification simply corresponds to
w < 4 and w̄ < 4, so these cancellations follow immedi-
ately from Eq. (6), as shown in Table II.
Weighing tree amplitudes.—To begin, we compute the

holomorphic and antiholomorphic weights ðwn; w̄nÞ of a
general n-point on-shell tree amplitude in a renormalizable
theory of massless particles. We start at lower-point
amplitudes and apply induction to extend to higher-point
amplitudes.
The three-point amplitude is

Að1h12h23h3Þ ¼ g ×

8<
:

h12ir3h23ir1h31ir2 ; P
i
hi ≤ 0

½12�r̄3 ½23�r̄1 ½31�r̄2 ; P
i
hi ≥ 0

ð7Þ

where g is the coupling and each case corresponds to
maximally helicity violating (MHV) and MHV kinematics,
j1� ∝ j2� ∝ j3� and j1i ∝ j2i ∝ j3i. Lorentz invariance
fixes the exponents to be ri ¼ −r̄i ¼ 2hi −

P
jhj andP

iri ¼
P

ir̄i ¼ 1 − ½g� by dimensional analysis [8].
According to Eq. (7), the corresponding weights are

ðw3; w̄3Þ ¼
( ð4 − ½g�; 2þ ½g�Þ; P

i
hi ≤ 0

ð2þ ½g�; 4 − ½g�Þ; P
i
hi ≥ 0:

ð8Þ

In a renormalizable theory, ½g� ¼ 0 or 1, so we obtain

w3; w̄3 ≥ 2; ð9Þ
for the three-point amplitude.
The majority of four-point tree amplitudes satisfy

w4; w̄4 ≥ 4 because w4 < 4 and w̄4 < 4 require a nonzero

total helicity which is typically forbidden by helicity
selection rules. To see why, we enumerate all possible
candidate amplitudes with w4 < 4. Analogous arguments
will apply for w̄4 < 4.
Most four-point tree amplitudes with w4 ¼ 1 or 3 vanish

since they have no Feynman diagrams, so

0 ¼ AðFþFþF�ϕÞ ¼ AðFþFþψ�ψ�Þ
¼ AðFþF−ψþψþÞ ¼ AðFþψþψ−ϕÞ
¼ Aðψþψþψþψ−Þ:

Furthermore, most amplitudes with w4 ¼ 0 or 2 vanish due
to helicity selection rules, so

0 ¼ AðFþFþFþF�Þ ¼ AðFþFþψþψ−Þ
¼ AðFþFþϕϕÞ ¼ AðFþψþψþϕÞ:

While Feynman diagrams exist, they vanish on shell for
the chosen helicities. This leaves a handful of candidate
nonzero amplitudes,

0 ≠ AðψþψþψþψþÞ; AðFþϕϕϕÞ; AðψþψþϕϕÞ;
with w4 ¼ 2; 3; 3, respectively. These “exceptional ampli-
tudes” are the only four-point tree amplitudes with w4 < 4
that do not vanish identically.
The exceptional amplitudes all require internal or external

scalars, so they are absent in theorieswith only gauge bosons
and fermions, e.g., QCD. The second and third amplitudes
involve superrenormalizable cubic scalar interactions,which
we do not consider here. The first amplitude arises from
Yukawa couplings of nonholomorphic form: that is, ϕψ2

together with ϕ̄ψ2, which in a supersymmetric theory would
violate holomorphy of the superpotential. In the standard
model, Higgs doublet exchange generates an exceptional
amplitude proportional to the product up-type and down-
typeYukawa couplings. This diagramwill be important later
when we consider the standard model. In summary,

w4; w̄4 ≥ 4; ð10Þ
for the four-point amplitude, modulo exceptional amplitudes.
Finally, consider a general higher-point tree amplitude,

Ai, which on a factorization channel equals a product of
amplitudes, Aj and Ak,

1 3 5

5

3

1

0 2 4 6

6

4

2

0

FIG. 1. Weight lattice for dimension five and six operators,
suppressing flavor and Lorentz structures, e.g., on which fields
the derivatives act. Our nonrenormalization theorems permit
mixing of operators into operators of equal or greater weight.
Pictorially, this forbids transitions down or to the left.

TABLE I. Anomalous dimension matrix for dimension five
operators in a general quantum field theory. The shaded entries
vanish by our nonrenormalization theorems.
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fact½Ai� ¼
i
l2

X
h

AjðlhÞAkð−l−hÞ; ð11Þ

depicted in Fig. 2. If the total numbers and helicities of Ai,
Aj, and Ak, are ðni; hiÞ, ðnj; hjÞ, and ðnk; hkÞ, then ni ¼
nj þ nk − 2 and hi ¼ hj þ hk, since either side of the
factorization channel carries equal and opposite helicity.
Thus, the corresponding weights, ðwi; w̄iÞ, ðwj; w̄jÞ, and
ðwk; w̄kÞ, satisfy the following tree selection rule:

wi ¼ wj þ wk − 2

w̄i ¼ w̄j þ w̄k − 2: ð12Þ
We have already shown that w3; w̄3 ≥ 2 and w4; w̄4 ≥ 4
modulo the exceptional diagrams. Since all five-point
amplitudes factorize into three and four-point amplitudes,
Eq. (12) implies that w5; w̄5 ≥ 4. Induction to a higher-
point amplitude then yields the main result of this section,

wn; w̄n ≥
�
2; n ¼ 3

4; n > 3
ð13Þ

which, modulo exceptional amplitudes, is a lower bound
on the weights of n-point tree amplitudes in a theory of
massless particles with marginal interactions. Note that
even when exceptional amplitudes exist, wn; w̄n ≥ 2.
An important consequence of Eq. (12) is that attaching

renormalizable interactions to an arbitrary amplitude
Aj—perhaps involving irrelevant interactions—can only
produce an amplitude Ai of greater or equal weight. To
see why, note that Ai factorizes into Aj and an amplitude
Ak composed of only renormalizable interactions, where
wk; w̄k ≥ 2 by Eq. (13). Equation (12) then implies that
wi ≥ wj and w̄i ≥ w̄j, so the minimum weight amplitude
involving a higher dimension operator is the contact
amplitude built from a single insertion of that operator.
Weighing one-loop amplitudes.—The weights of one-

loop amplitudes are obtained from generalized unitarity and

the tree-level results of the previous section. The leading
order renormalization of higher dimension operators is
encoded in the anomalous dimension matrix γij describing
how Oi is radiatively generated by Oj and loops of
marginal interactions. In practice, γij is extracted from
the one-loop amplitude Aloop

i built around an insertion ofOj
with the same external states as the tree amplitude Ai built
around an insertion of Oi. Any ultraviolet divergence in
Aloop
i must then be absorbed by the counterterm Ai, which

implies nonzero γij. By dimensional analysis, a necessary
condition for renormalization is that Oi and Oj have equal
mass dimension, but as we will see, this is not a sufficient
condition because of our nonrenormalization theorems.
The Passarino-Veltman (PV) reduction [9] of the one-

loop amplitude Aloop
i is

Aloop
i ¼

X
box

d4I4 þ
X
triangle

d3I3 þ
X
bubble

d2I2 þ rational;

which sums over topologies of scalar box, triangle, and
bubble integrals, I4, I3, and I2. Tadpole integrals vanish for
massless particles. The integral coefficients d4, d3, and d2
are rational functions of external kinematic data. Ultraviolet
log divergences arise from the scalar bubble integrals in

TABLE II. Anomalous dimension matrix for dimension six operators in a general quantum field theory. The shaded
entries vanish by our nonrenormalization theorems, in full agreement with [2]. Here y2 and ȳ2 label entries that are nonzero
due to nonholomorphic Yukawa couplings, × labels entries that vanish because there are no diagrams [3], and ×� labels
entries that vanish by a combination of counterterm analysis and our nonrenormalization theorems.

FIG. 2. Diagrams of tree factorization and one-loop unitarity,
with the weight selection rules from Eqs. (12) and (18).

PRL 115, 071601 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending

14 AUGUST 2015

071601-3



the PV reduction, where in dimensional regularization,
I2 → 1=ð4πÞ2ϵ. Separating ultraviolet divergent and finite
terms, we find

Aloop
i ¼ 1

ð4πÞ2ϵ
X
bubble

d2 þ finite; ð14Þ

which implies a counterterm tree amplitude,

Ai ¼ −
1

ð4πÞ2ϵ
X
bubble

d2; ð15Þ

so Aloop
i þ Ai is finite.

Generalized unitarity [1] fixes integral coefficients by
relating kinematic singularities of the one-loop amplitude
to products of tree amplitudes. The two-particle cut in a
particular channel is

cut½Aloop
i � ¼

X
h1;h2

Ajðlh1
1 ;lh2

2 ÞAkð−l−h1
1 ;−l−h2

2 Þ; ð16Þ

where l1;l2 and h1; h2 are the momenta and helicities of
the cut lines and Aj and Ak are on-shell tree amplitudes
corresponding to the cut channel, as depicted in Fig. 2.
Applying this cut to the PV reduction, we find

cut½Aloop
i � ¼ d2 þ terms depending on l1;l2; ð17Þ

where the l1;l2 dependent terms correspond to two-
particle cuts of triangle and box integrals. Famously, the
divergence of the one-loop amplitude is related to the two-
particle cut [10–12]. However, a kinematic singularity is
present only if Aj and Ak are four-point amplitudes or
higher, corresponding to “massive” bubble integrals. When
Aj or Ak are three-point amplitudes, the associated
“massless” bubble integrals are scaleless and vanish in
dimensional regularization. We ignore these subtle contri-
butions for now but revisit them later.
Equations (15), (16), and (17) imply that the total

numbers and helicities ðni; hiÞ, ðnj; hjÞ, ðnk; hkÞ of Ai,
Aj and Ak satisfy ni ¼ nj þ nk − 4 and hi ¼ hj þ hk, and
thus the one-loop selection rule,

wi ¼ wj þ wk − 4;

w̄i ¼ w̄j þ w̄k − 4; ð18Þ
where ðwi; w̄iÞ, ðwj; w̄jÞ, and ðwk; w̄kÞ are the corresponding
amplitude weights. For each γij we identify Ai and Aj with
tree amplitudes built around insertions of Oi and Oj, and
Ak with a tree amplitude of the renormalizable theory. As
noted earlier, the amplitudes on both sides of the cut must be
four-point or higher for a nontrivial unitarity cut, so Eq. (13)
implies that wk; w̄k ≥ 4, absent exceptional amplitudes.
Equation (18) then implies thatwi ≥ wj and w̄i ≥ w̄j, which
is the nonrenormalization theorem of Eq. (5). If exceptional
amplitudes with wk; w̄k ¼ 2 are present from nonholomor-
phic Yukawas, then Eq. (5) is violated by exactly two units.
Figure 1 shows the weight lattice for all dimension five

and six operators in a general quantum field theory. We
employ the operator basis of Ref. [13], so redundant

operators, e.g., those involving □ϕ, are eliminated by
equations of motion. Our nonrenormalization theorems
imply that operators can only renormalize operators of
equal or greater weight, which in Fig. 1 forbids transitions
that move down or to the left. The form of the anomalous
dimension matrix for all dimension five and six operators is
shown in Tables I and II.
Infrared divergences.—We now return to the issue

of massless bubble integrals. While these contributions
formally vanish in dimensional regularization, this is
potentially misleading because ultraviolet and infrared
divergences enter with opposite sign 1=ϵ poles. Thus, an
ultraviolet divergence may be present if there is an equal
and opposite virtual infrared divergence [10–12]. Crucially,
the Kinoshita-Lee-Nauenberg theorem [14] maintains that
all virtual infrared divergences are canceled by an inclusive
final state sum incorporating tree-level real emission of an
unresolved soft or collinear particle. Inverting the logic, if
real emission is infrared finite, then there can be no virtual
infrared divergence and thus no ultraviolet divergence. As
we will see, this is true of the massless bubble contributions
which were discarded but could a priori violate Eq. (5).
To diagnose potential infrared divergences in Aloop

i , we
analyze the associated amplitude for real emission, Areal

i0 . In
the infrared regime, the singular part of this amplitude
factorizes: Areal

i0 → AiSi→i0 þ AjSj→i0 , where Ai and Aj are
tree amplitudes built around insertions of Oi and Oj, and
Si→i0 and Sj→i0 are soft-collinear functions describing the
emission of an unresolved particle. The soft-collinear
functions from marginal interactions diverge as 1=ω and
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − cos θ

p
in the soft and collinear limits, respectively,

where ω and θ are the energy and splitting angle charac-
terizing the emitted particle. By dimensional analysis,
irrelevant interactions have additional powers of soft or
collinear momentum rendering them infrared finite—a fact
we have verified explicitly for all dimension five and six
operators. Since the phase-spacemeasure is

R
dωω

R
dcosθ,

infrared divergences require that Si→i0 and Sj→i0 both arise
from soft and/or collinear marginal interactions.
For soft emission, the hard process is unchanged [15].

Since AiSi→i0 and AjSj→i0 contribute to the same process, Ai
and Aj must have the same external states and thus equal
weight, wi ¼ wj. While massless bubbles do contribute
infrared and ultraviolet divergences not previously
accounted for, this is perfectly consistent with the non-
renormalization theorem in Eq. (5), which allows for
operator mixing when wi ¼ wj. Violation of Eq. (5) instead
requires the presence of infrared divergences when
wi < wj. However, the corresponding soft emission would
induce a hard particle helicity flip and thus be subleading in
the soft limit and finite upon

R
dω integration.

Similarly, collinear emission is divergent for wi ¼ wj but
finite for wi < wj. Since AiSi→i0 and AjSj→i0 have the same
external states and weight, restricting to wi < wj means that
wðSi→i0 Þ > wðSj→i0 Þ. Equation (8) then implies that Si→i0
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and Sj→i0 are collinear splitting functions generated by on-
shell MHV and MHV amplitudes. As a result, the inter-
ference term S�j→i0Si→i0 carries net little group weight with
respect to the mother particle initiating the collinear
emission. Rotations of angle ϕ around the mother particle
axis act as a little group transformation on S�j→i0Si→i0 ,

yielding a net phase e2iϕ in the differential cross section.
Integrating over this angle yields

R
2π
0 dϕe2iϕ ¼ 0, so the

collinear singularity vanishes upon phase-space integration.
In summary, since real emission is infrared finite for

wi < wj, there are no corresponding ultraviolet divergences
from massless bubbles. The nonrenormalization theorems
in Eq. (5) apply despite infrared subtleties.
Application to the standard model.—Our results apply to

the standard model and its extension to higher dimension
operators [2,4–7]. A tour de force calculation of the full
one-loop anomalous dimension matrix of dimension six
operators [5] unearthed a string of miraculous cancellations
not enforced by a manifest symmetry and visible only after
the meticulous application of equations of motion [2].
Lacking an explicit Lagrangian symmetry, the authors of
Ref. [2] conjectured an underlying “holomorphy” of the
standard model effective theory.
The cancellations in Ref. [2] are a direct consequence of

the nonrenormalization theorems in Eq. (5) and Eq. (6),
based on a classification of holomorphic (w < 4), anti-
holomorphic (w̄ < 4), and nonholomorphic operators
(w; w̄ ≥ 4), and violated only by exceptional amplitudes
(w; w̄ ¼ 2) generated by nonholomorphic Yukawas. The
shaded entries in Table II denote zeroes enforced by
our nonrenormalization theorems. Entries marked with ×
trivially vanish because there are no associated Feynman
diagrams, while entries marked with ×� vanish because
the expected divergences in ψ2ϕ3 and ϕ6 are accompanied
by a counterterm of the form ϕ4D2 [5] which is forbidden
by our nonrenormalization theorems.
The superfield formalism offers an enlightening albeit

partial explanation of these cancellations [16] and analogous
effects in chiral perturbation theory [17]. These results are
clearly connected to our own via the “effective” supersym-
metry of tree-level QCD [18], and merit further study.
Conclusions.—We have derived a new class of one-loop

nonrenormalization theorems for higher dimension operators
in a general four-dimensional quantum field theory. Since our
arguments follow from unitarity and helicity, they are broadly
applicable and explain the peculiar cancellations observed in
the dimension six renormalization of the standard model.
Nonrenormalization at higher loop orders remains an

open question. However, Eq. (5) will likely fail at two-loop
level since helicity selection rules are violated by finite one-
loop corrections [19]. Another avenue for future study is
higher dimensions, where helicity is naturally extended
[20] and dimensional reduction offers a bridge to massive
theories. Finally, it would be interesting to link our results
to conventional symmetry arguments like those of

Ref. [16]. Indeed, our definition of weight is reminiscent
of both R symmetry and twist, which relate to existing
nonrenormalization theorems.
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