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We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of
dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond
fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the
interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result
suggests that the genericity arguments used in string landscape discussions should be viewed with caution.
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Introduction.—The construction of accelerating space-
times in string theory is a central open problem. We will
focus on the case of maximally symmetric de Sitter space-
times, which provide a good model for our observed
Universe. The difficulty in realizing acceleration in string
theory has simple origins. All classical sources of stress
energy in the low-energy effective theories that emerge
from string theory or M-theory obey the strong energy
condition (SEC). These sources, which include branes,
antibranes, fluxes, and smooth choices of metric, cannot
produce acceleration without explicit time dependence in
internal directions [1–3].
We are therefore left with the following question: can

intrinsically stringy ingredients, like orientifold planes,
perhaps in conjunction with quantum effects, lead to
acceleration? If not, then the current paradigm for con-
necting string theory to the observed Universe via com-
pactification is in jeopardy. We might then imagine other
starting points which can evade the no-go constraints; for
example, compactifications on spaces with boundaries,
including the special case of localizing gravity on domain
walls.
The goal of this Letter is to strengthen prior no-go results

to include stringy ðα0Þ effects. One of the difficulties with
progress on the string landscape is that most proposed
constructions involve poorly understood ingredients. We
will evade many of these complications by studying a
corner of string theory where classical stringy effects can
be robustly analyzed, namely, the heterotic string. Unlike
type II theories, type I string theory, or M-theory, the
classical physics of flux compactifications can be studied in
the heterotic string using currently available world-sheet
technology.
We will provide an argument based on symmetries that

essentially rules out de Sitter space-times in the classical
heterotic string. [The same conclusion applies directly to
type II backgrounds without Ramond-Ramond (RR)
fluxes.] The ten-dimensional space-time action of this
theory has the schematic (string frame) form

S ¼ 1

2κ2

Z
d10x

ffiffiffiffiffiffi
−g

p
e−2Φ

h
Rþ α0

4
trjRþj2 þ α03R4 þ � � �

i
:

ð1Þ

The omitted terms include an infinite set of higher
curvature interactions involving the metric, the dilaton
Φ, the B field, the gauge fields, and the fermions. We will
argue that this action does not have de Sitter solutions of
dimension 4 or higher with a cosmological constant that
remains finite in the classical limit gs ¼ eΦ → 0.
From the world-sheet σ-model point of view, our

analysis captures all perturbative α0 corrections and non-
perturbative effects like world-sheet instantons, as well as
high curvature solutions, which cannot be described in an
α0 expansion. It applies to both stable and unstable de
Sitter space-times. Supersymmetry plays no role in our
discussion.
One might wonder whether the interactions captured in

the tree-level action (1) can ever give rise to space-time
solutions with a cosmological constant. The answer to that
question is certainly yes: AdS3 × S3 × T4 is an exact tree-
level solution of the heterotic string, with suitable H3 flux
(see, e.g., Ref. [4]). In addition, action (1) certainly contains
higher derivative interactions that violate the SEC; in
principle, solutions with a positive cosmological constant
are possible. If anything, the absence of de Sitter solutions
to (1) would appear strange from the perspective of
genericity arguments.
The classical heterotic string involves many of the

ingredients that are used in existing landscape construc-
tions. We can ponder what ingredients are omitted and what
the implications of our results for such constructions are.
What we assume is the validity of the perturbative string
starting point; namely, a world-sheet conformal field
theory. The only ingredients not captured by our argument
are quantum corrections controlled by the string coupling
constant. These include both loop effects and string non-
perturbative effects. At least string nonperturbative effects
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play a significant role in many heterotic landscape pro-
posals. For a recent discussion of heterotic landscape
constructions based on Calabi-Yau compactifications, see
Refs. [5,6].
Our world-sheet analysis both extends and complements

the space-time analysis of Refs. [7,8]. Specifically, the
space-time analysis of Ref. [7] applies to any accelerating
solution of Friedmann-Lemaîitre-Robertson-Walker type
rather than just de Sitter space, but it only accounts for
the leading stringy α0 effects. This analysis has recently
been extended to include the effect of gaugino condensa-
tion [9]. On the other hand, the world-sheet argument
given here applies specifically to the de Sitter case, but it
captures all world-sheet effects. For prior interesting work
discussing world-sheet constraints on acceleration, see
Refs. [10,11].

Branes and dual interpretations: Two final comments are
in order. The first concerns branes. Aside from fundamental
strings, the heterotic string only contains NS5-branes and
anti-NS5-branes. There are many backgrounds that involve
NS5-branes and anti-NS5-branes in which the string
coupling is position dependent, but uniformly small. Our
world-sheet argument applies to all such backgrounds.
The second comment concerns duality. Many type II

and M-theory landscape constructions begin with a four-
dimensional large volume string compactification preserv-
ing N ¼ 1 space-time supersymmetry. Supersymmetry is
then spontaneously broken at a scale well below the
Kaluza-Klein scale. For models with F-term supersym-
metry breaking, generic quantum corrections to the
space-time superpotential can, in principle, give de Sitter
critical points; see, for example, Ref. [12] for a type IIB
scenario.
One can imagine considering exactly this scenario with

the perturbative heterotic string as the starting point, and
one might be inclined to expect a qualitatively similar result
of many de Sitter solutions. The heterotic space-time
superpotential is corrected by world-sheet instantons, as
well as by space-time instantons and one loop in string
perturbation theory. Our general result, which we stress
requires no low-energy supersymmetry, captures the world-
sheet instantons exactly along with all α0 corrections to the
space-time Kähler potential. With these ingredients, there
are no macroscopic dSn minima for n > 3.
We can try to interpret this result in terms of dual

descriptions. In general, it does not make sense to try to
map loop and nonperturbative effects between duality
frames. A perturbative expansion in one theory is usually
not useful for learning about perturbative expansions in a
dual description. The cases where duality is useful involve
low-energy quantities like space-time superpotentials.
These are precisely the ingredients that go into typical
landscape constructions.
We can get a feel for what we are including and omitting

in the language of type II orientifold constructions in the

following way. Let us recall the following chain of dual-
ities: the Spinð32Þ=Z2 heterotic string is S dual in ten
dimensions to the type I string. The heterotic string on T2 is
dual to F-theory on a K3 surface. Similarly, the heterotic
string on T3 is dual to M-theory on a K3 surface, while the
T4 case is dual to type IIA on K3.
These are exact dualities, which can be used to relate

type I and heterotic backgrounds, and type II and M-theory
backgrounds with a K3 factor to heterotic vacua with
torus factors. While these are exact dualities, they are
typically only useful for computing special quantities like
the space-time superpotential.
Let us take one of the most studied examples of a type

IIB flux vacuum [13]; namely, F-theory onK3 × K3, which
has an orientifold limit corresponding to type IIB on

M ¼ T2

Ωð−1ÞFLZ2

× K3: ð2Þ

One can turn on G3 fluxes that preserve some or no
supersymmetry while solving the leading order equations
of motion. The breaking of supersymmetry by flux corre-
sponds toF-term breaking in the four-dimensional effective
supergravity description.
The basic nonperturbative effects that can renormalize

the space-time superpotential correspond to Euclidean
wrapped D3-branes in type IIB. These branes wrap divisors
of M. There are two basic cases from which one can
construct the general divisor: the brane instanton can wrap
ðT2=Z2 ∼ P1Þ ×D2, where D2 is a divisor of K3, or it can
wrap the K3 surface of M. The Euclidean D3-brane
wrapping P1 corresponds to the dual heterotic string, so
the first class of corrections corresponds to world-sheet
instantons captured by our argument. The case of wrapping
the K3 surface corresponds to a wrapped NS5-brane in the
heterotic dual description, which we do not capture. In the
general case of type IIB on a threefold X3 with a P1

fibration, the only brane instantons we miss are those that
include the base of the fibration.
Orientifold planes play a crucial role in the construction

of type IIB flux vacua. Without orientifold planes, compact
solutions with flux are not possible. Orientifold planes can
both have negative tension and support SEC violating
interactions; for this reason, it is commonly suggested that
orientifolds might lead to the evasion of the supergravity
no-go theorems prohibiting acceleration. The heterotic
string has no orientifold planes. Yet, the orientifold
supported couplings that make possible type IIB flux vacua
are already present in the classical heterotic string. An
example of such a coupling is the gravitational modifica-
tion of the heterotic Bianchi identity:

dH3 ¼
α0

4
½trðR ∧ RÞ − trðF ∧ FÞ�: ð3Þ
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Along with this modification come assorted SEC violating
interactions, but our result shows that the mere presence of
these effects is not sufficient to generate de Sitter solutions.
We expect a qualitatively similar conclusion in a type II
setting: the mere presence of orientifold planes is not
sufficient to generate de Sitter solutions.
Space-time and world-sheet symmetries.—The isome-

tries of dSn and AdSn are most easily seen by realizing
these space-times as submanifolds of R1;n and R2;n−1,
respectively,

−x20 � x2n þ
Xn−1
i¼1

x2i ¼ �L2; ð4Þ

where the ambient space is endowed with the canonical
metric:

ds2 ¼ −dx20 � dx2n þ
Xn−1
i¼1

dx2i : ð5Þ

The plus sign gives dS while the minus sign gives anti–de
Sitter (AdS), and the length scale L sets the radius of
curvature of the space-time. The connected component of
the isometry group of dSn is therefore the SOð1; nÞ Lorentz
symmetry group of the ambient Minkowski space-time.
We are interested in the question of whether an n-

dimensional de Sitter space-time can be realized in classical
heterotic string theory. In general, heterotic string back-
grounds are described by a world-sheet conformal field
theory (CFT) with (1,0) supersymmetry and central charge
ðc; c̄Þ ¼ ð15; 26Þ, tensored with the ghost sector of (1,0)
world-sheet supergravity. Since we want to go beyond
the supergravity approximation, it is natural to ask what
we mean by a de Sitter background. We will require the
world-sheet CFT to have the following properties. (1) The
SOð1; nÞ symmetry should be realized as an exact sym-
metry of the string theory. In particular, the world-sheet
theory should have conserved currents ðJa; J̄aÞ, where a
runs over the adjoint representation of SOð1; nÞ, that satisfy
the conservation equation

∂̄Ja þ ∂J̄a ¼ 0: ð6Þ

The charge associated with (6),

Qa ¼
I

dzJa þ
I

dz̄J̄a; ð7Þ

must be a physical observable in string theory. This means
that the Ja’s transform under the world-sheet superconfor-
mal group as top components of superfields whose bottom
components are primaries of dimension ð1

2
; 0Þ, and the J̄a’s

are conformal primaries of dimension (0,1). (2) We will
further assume that the background can be Wick rotated to

a Euclidean one by taking x0 → ix0 in Eq. (6), and that this
gives a compact unitary CFT with symmetry SOðnþ 1Þ
realized again by currents satisfying Eq. (6). A Wick
rotation of this sort is often impossible. For example, the
σ model on the SUð2Þ group manifold cannot be Wick
rotated to give three-dimensional de Sitter space due to the
presence of a three-form field strength on the three-sphere,
H ¼ dB, which is proportional to the volume form on the
sphere. This field strength is real in Euclidean space, but it
is imaginary in the Lorentzian signature. Thus, for the case
n ¼ 3 the Wick rotation is potentially obstructed by the
presence of the Neveu-Schwarz B field in heterotic string
theory [14]. However, for n > 3, e.g., for the case of dS4,
we do not expect such an obstruction to exist. At the σ
model level, this is the statement that there are no nontrivial
p < n form field strengths on an n-dimensional de Sitter
space that preserve the full SOð1; nÞ symmetry. This is
derived in the Appendix. Of course, if the de Sitter vacuum
is inherently stringy, the σ model may not provide a
quantitatively accurate description, but we are assuming
that it provides a good qualitative guide in the above sense.
Under these assumptions, the Wick rotated background

is a compact unitary CFT with a global SOðnþ 1Þ
symmetry realized as in Eq. (6). As is well known, this
means that the currents Ja and J̄a are separately conserved,
∂̄Ja ¼ 0, ∂J̄a ¼ 0. Indeed, conformal invariance implies
that the two point function of the currents is given by

hJaðzÞJbð0Þi ¼ k
z2
; hJ̄aðz̄ÞJ̄bð0Þi ¼ k̄

z̄2
: ð8Þ

This means that the two point function h∂̄JaðzÞ∂̄Jbð0Þi ¼ 0

for separated points, so the operator ∂̄Ja is null. In a unitary
compact CFT, such an operator must vanish. Similarly, one
has ∂J̄a ¼ 0.
The rotation generators in CFT on Rn, Jij ¼ x½i∂xj�, and

J̄ij ¼ x½i∂̄xj� are an example for which Eq. (6) is valid, but
Eq. (8) is not. This is because of the noncompactness of the
CFT, and in particular the presence of a continuum of states
starting at L0 ¼ 0. This phenomenon cannot occur in a
theory with a discrete spectrum.
The fact that the left- and right-moving currents are

separately conserved implies that the theory is actually
invariant under two copies of an SOðnþ 1Þ symmetry,
which is more than one would expect. One might think that
a natural solution for this issue is that one of the two copies
vanishes. For example, if the level of the left-moving
current algebra, k, vanishes, the operators Ja must vanish as
well, and there is only one set of SOðnþ 1Þ currents, J̄a, as
expected. However, this possibility suffers from the prob-
lem that the resulting theory does not contain a gravity
sector.
Indeed, based on experience from flat space-time and the

world-sheet construction of string theory on group mani-
folds (such as AdS3 and S3), we expect the gravity sector on
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a de Sitter background to be described by vertex operators
of the form ξabJaJ̄bV, where V is a vertex operator that
transforms as a primary of the affine Lie algebra, and ξab a
polarization tensor. If either Ja or J̄a are absent, such vertex
operators do not exist, and it is not clear in what sense one
can interpret the resulting construction as describing a
stringy generalization of gravity on dSn. In any case, we
will assume that the theory contains gravitons, which
means that k and k̄ are both strictly positive.
In fact, the constraint on the left-moving level, k, is

stronger since it is the total level of a super Kac-Moody
algebra. (A pedagogical discussion of super Kac-Moody
algebras may be found in chapter 18 of Ref. [16].) Recall
that a level k super Kac-Moody algebra consists of a
bosonic Kac-Moody (KM) algebra with level kB and free
fermions that transform in the adjoint of G. The latter
generate a Kac-Moody algebra with a level given by hG,
the dual Coxeter number of G. The total level is then
k ¼ kB þ hG. Unitarity requires kB to be a non-negative
integer. For G ¼ SOðnþ 1Þ one has hG ¼ n − 1. Thus, the
left-moving level satisfies the constraint

k ≥ n − 1: ð9Þ

There is also an upper bound on k from unitarity. In any
theory with a super Kac-Moody symmetry, one can write
the central charge as a sum of two contributions, that of the
super KM sector,

cSKM ¼
�
kB
k
þ 1

2

�
dimG; ð10Þ

and that of the coset obtained by modding out the CFT by
the super KM algebra, ccoset. If the original CFT is unitary,
so is the coset, which means that ccoset ≥ 0. Since the total
central charge is cSKM þ ccoset ¼ 15, and dim SOðnþ 1Þ ¼
nðnþ 1Þ=2, we get a constraint on the level k,

n − 1 ≤ k ≤
n − 1

3
2
− 30

nðnþ1Þ
: ð11Þ

For n ≥ 8, no solutions exist. For n ¼ 7, there is a unique
solution, k ¼ 6, which corresponds to ccoset ¼ 1, i.e., the
coset is an N ¼ 1 minimal model corresponding to a scalar
field on a circle of a particular radius, and the full solution is
a product of an N ¼ 1 supersymmetric Wess-Zumino-
Witten (WZW) model with G ¼ SOð8Þ and the minimal
model. In fact, the bosonic level kB ¼ 0 for this case, so the
supersymmetric WZW model is a theory of dim SOð8Þ ¼
28 free fermions transforming in the adjoint representation.
This model does not seem to have an interpretation as a

Euclidean dS7 background, despite its SOð8Þ symmetry.
In particular, it is not clear that there is a continuation to
the Lorentzian signature, with SOð1; 7Þ symmetry and a
sensible semiclassical interpretation. It is not surprising

that this is the case—theories with Kac-Moody symmetry
correspond to σ models on group manifolds and are
inherently Euclidean.
For a lower n, one finds two solutions with n ¼ 6,

corresponding to kB ¼ 0, ccoset ¼ 9=2 and kB ¼ 1 and
ccoset ¼ 1. For n ¼ 5, there are five solutions:

ðkB; ccosetÞ ∈ fð0; 15=2Þ; ð1; 9=2Þ; ð2; 5=2Þ;
ð3; 15=14Þ; ð4; 0Þg: ð12Þ

For n ¼ 4, there is no upper bound on k from Eq. (11), but
there is still just a small number of possible values of
ðkB; ccosetÞ. For kB > 17, we find that ccoset < 3=2, which
means the coset CFT must be a unitary N ¼ 1 minimal
model, and therefore

ccoset ¼
30

kB þ 3
¼ 3

2

�
1 −

8

pðpþ 2Þ
�

ð13Þ

for some integer p > 2. The only solutions are
ðkB; pÞ ∈ fð18; 12Þ; ð21; 6Þ; ð27; 4Þg.
All of the above solutions suffer from two problems: they

exist only for a few finite values of k, so the size of the
would be de Sitter space, which goes like L2 ∼ kl2s , is
bounded. [A simple way to understand this scaling is to
note that the world-sheet dimensions of primaries go like
C2ðRÞ=k, where C2 is the quadratic Casimir operator in the
representation R.] Even more seriously, they do not seem
to have the interpretation of corresponding to a de Sitter
space, and in particular do not have a natural continuation
to the Lorentzian signature.
To summarize, we see that the presence of separately

conserved left- and right-moving currents in potential
world-sheet constructions of dSn space-times with n ≥ 4
essentially rules out the possibility that such spaces arise in
heterotic string theory. Note that we do not require that the
string dilaton be stabilized, or even that the world-sheet
theory be free of tachyons. There are no (macroscopic)
stable or unstable de Sitter solutions at tree level in string
perturbation theory.
It is worth mentioning one possible way to evade this

constraint. If one could find a background in which the
world-sheet ghost sector does not decouple from the matter
sector, then unitarity of the world-sheet theory would no
longer be guaranteed, invalidating one of the requirements
for promoting a space-time symmetry to a Kac-Moody
symmetry. For type II string theories, it is easy to find such
backgrounds by turning on RR fluxes. In the case of the
heterotic string, we are not aware of any simple background
that requires a mixing of ghost and matter sectors. It
would be very interesting to find other ways to evade
our constraint.
Finally, we note that our argument does not generalize to

AdSn. As shown in the Appendix, we can still argue that
there is no obstruction to the Wick rotation for n > 3, but
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the resulting Euclidean theory is not compact, and we
cannot immediately conclude that the AdSn isometries
must be realized by KM symmetries. This is an interesting
direction for future study.
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APPENDIX: INVARIANT FORMS ON (A)dS

In this appendix we classify isometry-invariant forms
on (A)dS space. We show that the only such forms are
constants and constant multiples of the volume form on
those space-times.
Let X ¼ Rp;q and let η to be the canonical flat metric

with signature ðp; qÞ. Fixing a global set of coordinates xa,
a ¼ 1;…; nþ 1 on X, set

ρ ¼ xaxbηab: ðA1Þ

Let M be a connected component of the vanishing set of

fðxÞ ¼ ρþ t ðA2Þ

for some nonzero constant t. By pulling back the flat metric
η to the hypersurface M, we obtain our ðAÞdSn space. The
1
2
nðnþ 1Þ Killing vectors on M are obtained by projecting

the Lorentz generators on X. These have the form

V ¼ xaηabΛbc ∂
∂xc ; ðA3Þ

where Λ is a constant antisymmetric matrix, and since
LVf ¼ LVρ ¼ 0, every V preserves the hypersurface for
any t.
Consider a small tubular neighborhood N of M in X

parametrized by ρ and local coordinates onM. N is, in fact,
diffeomorphic to the total space of the normal bundle to M
in X, π∶ N → M. If ω0 ∈ ΩkðMÞ is an isometry-invariant
form, then π�ω0 is an isometry-invariant form on N, and
multiplying this by a suitable bump function bðρÞ,
we obtain a Lorentz-invariant k-form ω on Rp;q whose
pullback to M yields ω0.

Lorentz-invariant forms on Rp;q are familiar from basic
representation theory. Up to multiplying by a function of ρ,
the invariants are dρ and dVolðXÞ, which pull back to 0 on
M; and 1 and �ηdρ ¼ ϵa1���anþ1

xa1dxa2 � � � dxanþ1 , which pull
back to 1 and dVolðMÞ.
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