
Constraints on Dark Matter Interactions with Standard Model Particles
from Cosmic Microwave Background Spectral Distortions

Yacine Ali-Haïmoud,1 Jens Chluba,1,2 and Marc Kamionkowski1
1Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA

2Kavli Institute for Cosmology, Cambridge, Madingley Road, Cambridge CB3 0HA, United Kingdom
(Received 20 June 2015; published 14 August 2015)

We propose a new method to constrain elastic scattering between dark matter (DM) and standard model
particles in the early Universe. Direct or indirect thermal coupling of nonrelativistic DMwith photons leads
to a heat sink for the latter. This results in spectral distortions of the cosmic microwave background (CMB),
the amplitude of which can be as large as a few times the DM-to-photon-number ratio. We compute
CMB spectral distortions due to DM-proton, DM-electron, and DM-photon scattering for generic
energy-dependent cross sections and DM mass mχ ≳ 1 keV. Using Far-Infrared Absolute Spectropho-
tometer measurements, we set constraints on the cross sections formχ ≲ 0.1 MeV. In particular, for energy-

independent scattering we obtain σDM-proton≲10−24 cm2ðkeV=mχÞ1=2, σDM-electron≲10−27 cm2ðkeV=mχÞ1=2,
and σDM-photon≲10−39 cm2ðmχ=keVÞ. An experiment with the characteristics of the Primordial Inflation
Explorer would extend the regime of sensitivity up to masses mχ ∼ 1 GeV.
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Introduction.—In the standard cosmological model, dark
matter (DM) only interacts gravitationally, and a single
number (its abundance) suffices to accurately describe its
effect on the cosmic microwave background (CMB) anisot-
ropies and large-scale structure (LSS). However, a variety of
DMcandidates are predicted to interactweaklywith standard
model particles [1,2]. Several direct-detection experiments
[3–6] and various astronomical and cosmological probes
[2,7] have or will set limits on interacting DM models, but
large portions of parameter space are still unconstrained.
In this Letter, we propose a new probe of DM interactions

with standardmodel particles, relying on spectral distortions
(SDs) of the CMB blackbody spectrum. It is well known
that energy injection at redshifts z≲ 2 × 106 can distort the
CMB spectrum [8–10]. SDs take the form of a chemical-
potential (“μ-type”) distortion if energy injection occurs
early enough (z≳ 5 × 104) that Compton scattering effi-
ciently redistributes photons in frequency. The SD shape
smoothly transitions to a “y-type” distortion at lower red-
shifts when photon frequency redistribution becomes less
efficient. SDs have been used, for example, to constrain
decaying particles [11,12] or the primordial small-scale
power spectrum [13,14]. Conversely, any energy extraction
from the photons can also induce SDs. Such a process is at
work in the standard cosmological scenario [15–17]: CMB
photons heat up the nonrelativistic plasma throughCompton
scattering followed by rapid Coulomb interactions. Instead
of cooling down adiabaticallywith a temperatureTb ∝ 1=a2,
where a is the scale factor, electrons, protons, and helium
nuclei (“baryons” for short) are maintained in thermal
equilibrium with the photons down to redshift z ≈ 200,
with Tb ≈ Tγ ∝ 1=a [18]. This process removes heat from
the CMB and leads to negative μ-type and y-type distortions

of a few times the baryon-to-photon-number ratio, of order
a few parts in a billion.
The effect we describe in this Letter is an extension of the

aforementioned process. If a nonrelativistic DM particle is
thermally coupled to the electron-nucleon plasma through
frequent collisions, the energy extracted from the photons
by Compton scattering is then redistributed among a larger
number of particles. Maintaining the baryons and the DM
in thermal equilibrium with the radiation therefore requires
an increased rate of energy extraction from the photons.
Direct scattering of DM particles with photons have the
same outcome. In both cases SDs are generated, of order
up to a few times the DM-to-photon-number ratio. Given
the known DM mass density, this number is inversely
proportional to the DM mass.
To be more precise, this effect only takes place as long as

the heating of the DM is more efficient than the competing
adiabatic cooling due to cosmological expansion. Hence the
final SD is at most a few times the DM-to-photon-number
ratio, and it is smaller with a shorter epoch of tight thermal
coupling of DM with the photon-baryon plasma. For a
given sensitivity to SDs, there is, therefore, a maximum
mass that can be probed such that the SD reaches the
instrument sensitivity when the DM is tightly coupled at
all relevant times. This maximum mass is ∼0.1 MeV for
the Far-Infrared Absolute Spectrophotometer (FIRAS) [19]
and will be ∼1 GeV for a future SD experiment with the
sensitivity of the Primordial Inflation Explorer (PIXIE) [20].
Below that maximal mass, SD measurements can set an
upper bound to the duration of tight coupling, and, hence,
to the scattering cross section.
Because the maximal SD is inversely proportional to

the DM mass, the effect we introduce allows us to test
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light-DM models, while most direct-detection experiments
are insensitive to sub-GeV masses. In this first study we
limit ourselves to DM masses greater than 1 keV, such that
the DM is already nonrelativistic at the beginning of the
distortion epoch, z ≈ 2 × 106.
DM scattering with protons or electrons.—We assume

that the DM particle χ can elastically scatter off baryons
with a momentum-transfer cross section of the form
σðvÞ ¼ σnvn, where n is an arbitrary integer and v is the
magnitude of the baryon-DM relative velocity (in units of
the speed of light). Some of the best-motivated DM models
indeed have interactions of this form [21]. For instance,
electric-dipole or magnetic-dipole DM coupling to the
standard model through heavy charged messengers have
cross sections σ ∝ v2 and v4, respectively. In this Letter
we specifically consider scattering with either protons or
free electrons, and neglect scattering with helium nuclei.
Baryons maintain a single temperature at all times due to

extremely frequent Coulomb scatterings [18]. The baryon
temperature Tb is in turn closely coupled to the CMB
temperature Tγ through Compton scattering of photons by
free electrons. As long as the rate of DM-baryon scattering
is much larger than the Hubble expansion rate, DM
particles have a Maxwellian velocity distribution with
temperature Tχ ≈ Tb. Once the collision rate falls below
the expansion rate, then (i) the DM momenta start red-
shifting freely as pχ ∝ ð1þ zÞ, and (ii) if this decoupling
is not instantaneous and is velocity dependent, the
DM velocity distribution fχðv; tÞ is no longer necessarily
described by a Maxwell-Boltzmann law. One should
then, in principle, compute fχ by solving the Boltzmann
equation.
In the limit that the DM distribution is thermal and that

random velocities dominate over bulk flows (valid for
z≳ 104), Ref. [22] has shown that the evolution of the
DM temperature is governed by

_Tχ ¼ −2HTχ þ ΓχbðTb − TχÞ; ð1Þ

with Γχb ≡ 2cnNbσnmbmχ

ðmb þmχÞ2
�
Tb

mb
þ Tχ

mχ

�ðnþ1Þ=2
; ð2Þ

where cn is a constant depending on n given in [22] and
Nb ¼ N0

ba
−3 is the number density of scattering baryons.

Assuming radiation domination (valid at z≳ 3000), the
Hubble expansion rate HðaÞ scales as H ¼ H0ðΩ0

rÞ1=2a−2.
Setting Tb ¼ Tγ ¼ T0

γa−1, the ratio Γχb=H takes the form

Γχb

H
¼

�
aχb
a

�ðnþ3Þ=2�mχ=mb þ Tχ=Tb

mχ=mb þ 1

�ðnþ1Þ=2
; ð3Þ

where we have defined the characteristic scale factor aχb
such that

ðaχbÞðnþ3Þ=2 ≡mb

mχ

�
1þmb

mχ

�ðn−3Þ=2

×
2cnσnN0

bðT0
γ=mbÞðnþ1Þ=2

H0ðΩ0
rÞ1=2

: ð4Þ

The scale factor aχb marks the transition between thermal
coupling (Γχb ≳H) and decoupling (Γχb ≲H). In this
Letter, we will only consider slopes n > −3 for which
the DM starts tightly coupled to the baryons at early
times and thermally decouples at a ≳ aχb. In these cases
DM-baryon scattering can have negligible effects on CMB
anisotropies and LSS, yet can still manifest itself at high
redshifts and induce SDs.
We define the dimensionless parameter

rχb ≡ ΓχbðTb − TχÞ
HTb

; ð5Þ

which characterizes the efficiency of the DM-baryon
thermal coupling. In the limit that Γχb ≫ H, DM and
baryon temperatures are tightly coupled, Tχ ≈ Tb ¼ Tγ ,
which implies _Tχ ≈ −HTγ. Inserting this value back into
the left-hand side of Eq. (1), we obtain rχbða ≪ aχbÞ ¼ 1.
On the other hand, rχbða ≫ aχbÞ → 0 because Γχb ≪ H in
that regime. The transition from tight coupling to decou-
pling is sharper as n is increased, as can be seen from
Eq. (3). For n ¼ −2, Γχb=H ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
aχb=a

p
and thermal decou-

pling is very gradual, taking a few decades in scale factor.
This implies that the description of the DM velocity
distribution with a Maxwell-Boltzmann law is very inac-
curate in that case (unless the DM is self-interacting, which
we do not consider here). We defer the full solution of the
collisional Boltzmann equation to future work, and will
focus on n ≥ −1 in what follows.
We confirm all these features by solving Eq. (1) numeri-

cally and computing the resulting rχbðaÞ. We find that
rχb ≈ 1=2 at a ≈ ð2=3Þaχb for a broad range of mass ratios
and slopes n ≥ −1. Once the DM thermally decouples from
the baryons, its velocity distribution is no longer described
by the Maxwell-Boltzmann law and Eq. (1) is no longer
valid. As a result, the parameter rχbðaÞ we computed is
inaccurate for a ≳ aχb. We, therefore, adopt the following
simple step-function approximation for rχbðaÞ, which
captures its essential features:

rχbðaÞ ¼ 1 for a ≤ ð2=3Þaχb and 0 otherwise: ð6Þ

DM-photon scattering.—We also consider direct scatter-
ing of DMparticles with photons, with an energy-dependent
momentum-transfer cross section σðEγÞ ¼ σpðEγ=E0Þp.We
set the normalization at E0 ¼ 1 keV, close to the chara-
cteristic CMB photon energy at z ∼ 106. A Thomson-like
scattering (p ¼ 0) would arise, e.g., for a millicharged DM.
A quadratic dependence on energy (p ¼ 2) could arise from
a DM particle with an electric or magnetic dipole moment
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[23]. A quartic dependence (p ¼ 4) occurs, e.g., for
Rayleigh DM [24]. Assuming the DM is nonrelativistic
(mχ ≫ Tγ), the resulting heating rate is easily obtained by
generalizing the calculation of the Compton heating rate
due to scattering off free electrons [25],

_Tχ jχγ ¼ ΓχγðTγ − TχÞ; ð7Þ

with Γχγ ≡ 8

3

dpσpðTγ=E0Þpργ
mχ

; ð8Þ

where dp is a numerical constant with value (0.28, 1, 4.8,
28.2, 1558) for p ¼ ð−1; 0; 1; 2; 4Þ, respectively.
In this case, the ratio of interaction to expansion rates

takes the form

Γχγ

H
¼

�
aχγ
a

�
pþ2

; ð9Þ

where ðaχγÞpþ2 ≡ 8

3

dpσpρ0γ
mχH0ðΩ0

rÞ1=2
ðT0

γ=E0Þp: ð10Þ

We only consider p > −2 so that DM-photon interactions
are efficient at early times and irrelevant at a ≳ aχγ .
Here again we define the dimensionless parameter rχγ≡
ΓχγðTγ − TχÞ=HTγ , and compute it numerically (assuming
DM scatters off photons only). Its behavior is very similar
to the one obtained for rχb, with the correspondence
n↔2pþ 1, and we also approximate it by a step function
with a transition at a ¼ ð2=3Þaχγ .
Spectral distortions.—The baryon temperature evolves

according to (i) adiabatic cooling due to cosmological
expansion, (ii) Compton heating by CMB photons, and
(iii) energy exchange with the DM,

_Tb ¼ −2HTb þΓComðTγ − TbÞ þ
Nχ

Ntot
b
ΓχbðTχ − TbÞ: ð11Þ

Here Nχ ≡ ρχ=mχ is the number density of DM particles
and Ntot

b is the total number density of baryons (nuclei and
free electrons) maintained in equilibrium with one another.
As long as the plasma is fully ionized (valid for z≳ 6000),
Ntot

b ¼ 2NH þ 3NHe ≈ ρb=mHð2 − 5
4
YHeÞ, where NH and

NHe are the abundances of hydrogen and helium and YHe
is the helium fraction by mass. The last term in Eq. (11) is
easily obtained from Eq. (1) by requiring that baryon-DM
collisions conserve the total thermal energy.
The rate of extraction of energy from the photons by

Compton scattering is [15]

ργ
d
dt

�
Δργ
ργ

�
Com

¼ 3

2
Ntot

b ΓComðTb − TγÞ: ð12Þ

Since for all redshifts z≳ 200 Compton scattering main-
tains Tb ≈ Tγ to very high accuracy, the rate of change of
the baryon temperature is just _Tb ¼ −HTb. Replacing
the left-hand side of Eq. (11) by this value, we obtain

the net Compton heating rate; we substitute it in Eq. (12) to
arrive at

ργ
d
dt

�
Δργ
ργ

�
Com

¼ −
3

2
ðNtot

b þ rχbNχÞHTγ; ð13Þ

where the parameter rχbwas defined inEq. (5). The first term
was derived in Ref. [15] and translates the extraction of
energy fromphotons due toComptonheating of the baryons.
The second term arises from the enhanced heat capacity of
the baryon-DM fluid due to DM-baryon scattering.
The effect of direct DM-photon scattering is similar: In

this case the cooling rate of the photons is given by

ργ
d
dt

�
Δργ
ργ

�
χγ

¼ −
3

2
rχγNχHTγ: ð14Þ

To obtain the final relative amplitude of spectral dis-
tortions, we have to integrate Eq. (13) or Eq. (14) over time.
The high-redshift boundary is at zμ ≈ 2 × 106: Energy
injection (or extraction) at z≳ zμ simply leads to a change
of the photon temperature and does not distort the black-
body spectrum [10]. The low-redshift end is in principle
zmin ≈ 200, the epoch of thermal decoupling of baryons
from photons. In practice, energy injection at z≲ 104 leads
mostly to a y-type distortion [10,26]. Compton scattering
by free electrons in hot clusters and the reionized inter-
galactic medium leads to a y distortion of ∼2 × 10−6 [27].
This is below the sensitivity of FIRAS [19], but is orders of
magnitude larger than that of PIXIE [20]. We shall there-
fore not consider pure y distortions in this work; we cut the
integration at zmin ¼ 104 (amax ¼ 10−4). This allows us to
consider a radiation-dominated and fully ionized universe,
and to neglect bulk flows relative to thermal velocities [22].
Our final estimate for the amplitude of SDs due to DM-

baryon collisions is therefore

Δ≡ Δργ
ργ

≈ −
3

2

Z
tðzminÞ

tðzμÞ

Ntot
b þ rχbNχ

ργ
TγHdt

≈ − 0.56

�
Ntot

b

Nγ
log

�
amax

aμ

�
þ Nχ

Nγ
log

�
a�
aμ

��
; ð15Þ

where Nγ ≈ ργ=ð2.7TγÞ is the number density of CMB
photons, and we have taken the constant baryon-to-photon
and DM-to-photon-number ratios out of the integrals. The
cutoff a� is defined as a� ≡maxfaμ;min½amax; ð2=3Þaχb�g
(we smooth the transitions for better visual results). The
same expression applies to DM-photon scattering with the
substitution aχb → aχγ . The integrals only depend loga-
rithmically on the boundaries. Our various approximations
(i.e., taking a sharp boundary at aμ ¼ z−1μ instead of using
a SD visibility function [15], assuming a step function for
rχbðaÞ, and choosing amax ¼ 10−4) should, therefore, not
significantly affect our results, and they have the advantage
of giving simple analytic expressions.
Results.—All our results are computed with the current

best-fit values for cosmological parameters [19,28]. We
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show in Fig. 1 the photon distortion Δργ=ργ for velocity-
independent DM-proton scattering as a function of σ0, for
several values of the DM mass. For cross sections small
enough that ð2=3Þaχb < aμ (a� ¼ aμ), DM scattering has
no effect and the distortion plateaus at Δ0 ≈ −3 × 10−9,
due exclusively to the cooling of baryons [15–17]. For
cross sections large enough that ð2=3Þaχb > amax, the
DM is tightly coupled to baryons at all relevant times,
and the distortion saturates (a� ¼ amax regardless of
the cross section). In this limit, the distortion is enhanced
by a factor Nχ=Ntot

b ≈ 3ðGeV=mχÞ, so that Δ½σn → ∞�≈
Δ0 − 9 × 10−6ðMeV=mχÞ. Between these two regimes, the
distortion scales logarithmically with aχb and, hence, σn.
For a given sensitivity Δmax, a maximum mass mmax

χ can
be probed such that jΔ½σn → ∞; mmax

χ �j ¼ Δmax,

mmax
χ ≈ 1 MeV ×

9 × 10−6

Δmax − 3 × 10−9
: ð16Þ

Higher masses are completely unconstrained as they lead to
a too-small number density of DM particles. FIRAS has
measured the CMB blackbody spectrum to an accuracy
Δmax ≈ 5 × 10−5 [19], implying mmax

χ ≈ 0.18 MeV. The
proposed experiment PIXIE [20] will reach a sensitivity
Δmax ≈ 10−8. This will allow us to constrain the DM-baryon
and DM-photon cross sections up to DM masses
mmax

χ ≈ 1.3 GeV.
For masses mχ ≤ mmax

χ , a measurement of the CMB
blackbody spectrum to a precision Δmax would imply an
upper limit on the cross sections σχbn or σχγp . For DM-baryon
collisions we obtain, using Eqs. (15) and (4),

σχbn ≤ Cn
mχ

mb

�
1þmb

mχ

�ð3−nÞ=2�amax

aμ

�½ðnþ3Þ=2�mχ=mmax
χ

: ð17Þ

For DM-proton collisions, the numerical constants Cn are
ð1.4×10−30;1.1×10−27;8.2×10−25;5.5×10−22Þ cm2 for
n ¼ ð−1; 0; 1; 2Þ, respectively. For DM-electron collisions,
the corresponding values are ð1.4 × 10−30; 2.6 × 10−29;
4.5 × 10−28; 7.0 × 10−27Þ cm2. The constraint on the
DM-photon cross section is obtained similarly from
Eqs. (15) and (10),

σχγp ≲Dp
mχ

MeV

�
amax

aμ

�ðpþ2Þmχ=mmax
χ

; ð18Þ

with Dp ¼ ð6.3; 5.6; 3.7; 2.0; 0.4Þ × 10−37 cm2 for
p ¼ ð−1; 0; 1; 2; 4Þ, respectively.
Equations (16), (17), and (18) are the main results of this

Letter. Given a sensitivity Δmax, they allow us to obtain
upper limits on DM-baryon and DM-photon cross sections
with power-law dependence on the baryon-DM relative
velocity (with n ≥ −1) or photon energy (with p ≥ −1), up
to a maximal DM mass mmax

χ .
We plot in Fig. 2 the current constraints on the energy-

independent cross sections σχp0 ; σχe0 ; σχγ0 as a function of the
DM mass, given the FIRAS measurements. We also show
the forecasted constraints for the sensitivity of PIXIE.
Comparison with previous bounds.—Most direct-

detection experiments only constrain DM-nucleon cross
sections for masses mχ ≳ fewGeV, which are required to
produce sufficient nuclear recoil. Reference [22] derives
constraints on the ratio σn=mχ for DM-proton collisions in
the limit mχ ≫ mH, using CMB anisotropy and LSS data.
SDs, therefore, provide a probe of DM-nuclei scattering in

FIG. 1 (color online). Absolute value of the photon distortion
Δργ=ργ for DM collisions with protons, for a velocity-
independent cross section σ0. The solid curves are labeled by
the DM particle mass. The upper dashed curve indicates the
approximate constraint from FIRAS, Δργ=ργ ≤ 5 × 10−5 [19].
The lower dotted curve indicates the approximate forecasted
sensitivity of PIXIE, Δργ=ργ ∼ 10−8 [20].

FIG. 2 (color online). Current upper bounds from FIRAS
(solid) and forecasted detection thresholds from PIXIE (dotted)
on the energy-independent DM-proton (purple), DM-electron
(blue), and DM-photon (red) cross sections σ0, as a function of
the DM mass. Masses mχ ≥ 0.18 MeV are unconstrained by
FIRAS as the distortion can never reach Δργ=ργ ¼ 5 × 10−5,
even for infinitely large cross section. PIXIE will extend the
domain of constrainable masses by 4 orders of magnitude, up to
mχ ≈ 1.3 GeV. For comparison, we also show the constraints on
DM-electron scattering from XENON10 data [6] and the limits
on DM-photon scattering from Milky Way satellite counts [29].
No other probe currently constrains DM-proton scattering in the
range of masses shown.
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a mass range complementary to the one currently con-
strained. In particular, our limits on DM-proton scattering
from FIRAS measurements are the only existing bounds
for mχ ≲ 0.1 MeV.
Reference [6] has set the first constraints on the scatter-

ing of sub-GeV DM with electrons, which could lead to
ionization events in the target material [30]. For a velocity-
independent cross section, they find σ0 ≲ 3 × 10−38 cm2

for mχ ¼ 100 MeV, which is significantly better than what
we forecast at the same mass for a PIXIE-type experiment,
σ0 ≲ 10−26 cm2. The bound of Ref. [6], however, worsens
rapidly for DM masses below a few MeV. Here again,
FIRAS limits give the only existing bounds on DM-
electron cross sections for mχ ≲ 0.1 MeV.
Reference[29]givesaconstraintontheDM-photonenergy-

independent cross section using counts of Milky Way satel-
lites, translating to σ0 ≲ 3.7 × 10−36ðmχ=MeVÞ cm2. The
constraint we set with FIRAS for mχ ≪ 0.1 MeV is tighter
by a factor of ∼5, and PIXIE will allow to extend it up
to mχ ≈ 1 GeV. We also constrain the p ¼ 2 cross section
σ2 ≲ 2 × 10−37ðmχ=MeVÞ, tighter by 6 orders of magnitude
than the limit of Ref. [31] using CMB anisotropies.
Conclusions.—We have set forth a new avenue to probe

DM interactions with standard model particles using CMB
SDs.We have studied the effect of DM scatteringwith either
protons, electrons, or photons, for a power-law velocity
and energy dependence of the cross section.We have shown
that the FIRASmeasurements can already set constraints on
the cross sections for DM masses mχ ≲ 0.1 MeV. Above
this mass, the number of DM particles is too small to affect
the effective heat capacity of the plasma at a sufficient level.
The high sensitivity of PIXIE will allow to constrain DM
particles with masses up to ∼1 GeV.
Specific models for the DM particle would predict the

shape and relative strengths of interactions with different
species. The overall SD can be simply obtained by linearly
adding the contributions of each scattering process. While
we have only considered the characteristic amplitude of
the distortion in this Letter, its detailed form can easily be
obtained by convolving the energy extraction rate with a SD
Green’s function [26]. In particular, when DM-baryon or
DM-photon decoupling occurs after z ∼ 5 × 104, SDs may
allow for the determination of specific DM parameters
through the residual (non-μ and non-y) distortion [15,32,33].
Delving in such details would, however, require a better
treatment of the DM velocity distribution, which should be
computed by solving the Boltzmann equation rather than
assuming it is Maxwellian. We have also only considered
DM masses mχ ≳ 1 keV, such that the DM particle is non-
relativistic at z≲ 2 × 106. It would be interesting to extend
this work to lower masses and relativistic DM particles. We
defer the study of these questions to future work.
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