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We construct a phenomenological Landau theory for the two-dimensional helical Fermi liquid found on
the surface of a three-dimensional time-reversal invariant topological insulator. In the presence of rotation
symmetry, interactions between quasiparticles are described by ten independent Landau parameters per
angular momentum channel, by contrast with the two (symmetric and antisymmetric) Landau parameters
for a conventional spin-degenerate Fermi liquid. We project quasiparticle states onto the Fermi surface and
obtain an effectively spinless, projected Landau theory with a single projected Landau parameter per
angular momentum channel that captures the spin-momentum locking or nontrivial Berry phase of the
Fermi surface. As a result of this nontrivial Berry phase, projection to the Fermi surface can increase or
lower the angular momentum of the quasiparticle interactions. We derive equilibrium properties, criteria for
Fermi surface instabilities, and collective mode dispersions in terms of the projected Landau parameters.
We briefly discuss experimental means of measuring projected Landau parameters.
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The Landau theory of Fermi liquids (FLs) [1], or FL
theory for short, is the cornerstone of our understanding of
weakly correlated, gapless Fermi systems at low temper-
atures, such as 3He atoms in the normal liquid state and
itinerant electrons in metals. FL theory explains the
puzzling observation that despite strong interactions
between the constituent fermions, many Fermi systems
behave essentially as free Fermi gases, except for the
renormalization of their physical properties, which is
captured by dimensionless quantities known as Landau
parameters. These Landau parameters describe how the
elementary excitations of the FL—the quasiparticles and
quasiholes—interact with one another.
Topological insulators [2] provide new types of gapless

Fermi systems: topological surface or edge states. In the
absence of interparticle interactions, electrons propagating
on the edge of a two-dimensional (2D) topological insu-
lator [3] form a 1D helical Fermi gas [4]. In the presence of
interactions, the 1D helical Fermi gas becomes a 1D helical
Luttinger liquid [5] with no sharply defined Fermi points.
In 3D topological insulators, surface electrons form a 2D
helical Fermi gas [6], which is expected to evolve adia-
batically into a 2D helical FL in the presence of electron-
electron interactions.
This Letter presents a FL theory for the interacting 2D

surface states of the 3D topological insulator. To our
knowledge, such a helical FL theory has been missing in
the literature despite the recent surge of interest in the effects
of electron-electron interactions in topological insulators [7].
In the spirit of standard FL theory [1], we focus on systems
with a discrete time-reversal symmetry, the protecting
symmetry of topological insulators, as well as continuous

translation and spatial rotation symmetries. We further
consider the simplest case of a single surface Fermi sur-
face—denoted simply as the Fermi surface in the following
—which by rotation symmetry must be circular. This does
not apply to certain topological insulators whose Fermi
surface is strongly anisotropic, such as Bi2Te3 with 0.67%
Sn doping [8] where there are large hexagonal warping
effects due to the rhombohedral crystal structure of the bulk
material [9]. However, in several other topological insulators
such as Bi2Se3 [10], Bi2Te2Se [11], SbxBi2−xSe2Te [11],
Bi1.5Sb0.5Te1.7Se1.3 [12], Tl1−xBi1þxSe2−δ [13], strained
α-Sn on InSb(001) [14], and strained HgTe [15], the
Fermi surface as observed in angle-resolved photoemission
spectroscopy (ARPES) is very nearly circular. However, due
to spin-momentum locking in the topological surface states
[6]—a consequence of strong spin-orbit coupling, rotation
symmetry in a helical FL must necessarily involve spin
degrees of freedom, which leads to a theory rather different
from that of the conventional spin-degenerate FL. Moreover,
the existence of a single nondegenerate Fermi surface—a
consequence of the topological character of the bulk—
eventually leads, via the application of the general principles
of FL theory, to an effectively spinless FL theory. The
physical properties of the resulting helical FL are never-
theless distinct from those of a truly spinless FL, due to a
nontrivial mapping between physical, spinful quasiparticles
and the effective, spinless quasiparticles. For the same
reason, our helical FL theory is also qualitatively different
from recently constructed FL theories of nontopological
spin-orbit coupled systems such as the Rashba 2D electron
gas [16] and 3D spin-orbit coupled metals [17], which are
characterized by two (spin-split) Fermi surfaces.
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FL theory views the many-fermion system as a gas of
elementary excitations above the ground state, the quasi-
particles. Because translation symmetry is assumed, the
momentum p ¼ ðpx; pyÞ of the quasiparticles is well
defined and a configuration of quasiparticles is specified
by a distribution function np. In a conventional FL, spin is
conserved and the distribution function is diagonal in spin
space, npσ ¼ hc†pσcpσi, where c†pσ (cpσ) is a creation
(annihilation) operator for a fermion with momentum p
and spin σ ¼ ↑;↓, but in systems with spin-orbit coupling
such as the helical FL the distribution function is generally
a matrix in spin space, nαβp ¼ hc†pαcpβi [17]. The central
quantity in FL theory is the energy δE of the gas of
interacting quasiparticles relative to the ground-state
energy, expressed as a functional of the deviation δnαβp ≡
nαβp − nð0Þαβp of the distribution function from its value in the
ground state

δE½δnp� ¼
Z

đphαβðpÞδnαβp

þ 1

2

Z
đpđp0Vαβ;γδðp̂; p̂0Þδnαβp δnγδp0 ; ð1Þ

where (working in units such that ℏ ¼ 1)

hðpÞ ¼ vF ẑ · ðσ × pÞ ð2Þ
is the single-particle Dirac Hamiltonian of the topological
surface state [2] with vF the Fermi velocity [18];
Vαβ;γδðp̂; p̂0Þ is a reduced two-body interaction that
depends only on the unit vector p̂≡ p=jpj parametrizing
the Fermi surface, and we denote the integration measure
by

R
đp≡ R ½ðd2pÞ=ð2πÞ2�. The form of Eq. (1) can be

obtained from a generic, translationally invariant interac-
tion Vαβ;γδðk; k0; qÞ by requiring that all fermionic momenta
lie on the Fermi surface [19].
Our first goal is to derive the most general form of the

two-body interaction Vαβ;γδðp̂; p̂0Þ consistent with the gen-
eral principles of quantum mechanics and the symmetries
of the problem. This goal is most easily achieved by
expanding the two-body interaction as

Vαβ;γδðp̂; p̂0Þ ¼
X3
μ;ν¼0

X∞
l;l0¼−∞

Vll0
μνe

iðlθpþl0θp0 Þσμαβσ
ν
γδ; ð3Þ

where p̂ ¼ ðcos θp; sin θpÞ, l; l0 are angular momentum
quantum numbers, and the set of four 2 × 2 Hermitian
matrices σμ ¼ ð1; σÞ, where 1 denotes the identity matrix,
allows us to construct the quasiparticle charge δρp and spin
δsip densities (i ¼ x; y; z)

δρp ¼ σ0αβδn
αβ
p ¼ δαβδn

αβ
p ; δsip ¼

1

2
σiαβδn

αβ
p : ð4Þ

Upon substituting Eq. (3) in Eq. (1), one obtains three
classes of terms: charge-charge interactions proportional to
Vll0
00, spin-spin interactions proportional to Vll0

ij , and spin-
charge interactions proportional to Vll0

0i ¼ Vl0l
i0 . Time-

reversal symmetry implies that the angular momenta l
and l0 must differ by an even integer for charge-charge and
spin-spin interactions and by an odd integer for spin-charge
interactions [19].
The main difference between a conventional FL and a

spin-orbit coupled FL such as the helical FL lies in the
consequences of rotation symmetry. The single-particle
Hamiltonian (2) is neither invariant under a spatial rotation
nor invariant under a spin rotation, but is invariant under a
simultaneous rotation of spatial and spin coordinates:
½Jz; hðpÞ� ¼ 0, where Jz ¼ −ið∂=∂θpÞ þ 1

2
σz is the total

(orbital plus spin) angular momentum in the z direction.
Requiring that the interaction term in Eq. (1) be also
invariant under such rotations, we find that it can be written
as the sum of three terms δVcc, δVsc, and δVss, where [19]

δVcc ¼
1

2

X∞
l¼0

Z
đpđp0fccl cos lθpp0δρpδρp0 ð5Þ

is the charge-charge interaction,

δVsc ¼
X∞
l¼0

Z
đpđp0

× ½ðfsc;1l cos lθpp0 þ fsc;2l sin lθpp0 Þδρpp̂0 · δsp0

þ ðfsc;3l cos lθpp0 þ fsc;4l sin lθpp0 Þδρpp̂0 × δsp0
�

ð6Þ

is the spin-charge interaction, and

δVss ¼
1

2

X∞
l¼0

Z
đpđp0fcos lθpp0 ðfss;1l ðδsxpδsxp0 þ δsypδs

y
p0 Þ þ fss;2l δszpδs

z
p0 Þ þ fss;3l sin lθpp0δsp × δsp0

þ cos lθpp0 ðfss;4l ½ðp̂ · δspÞðp̂0 × δsp0 Þ þ ðp̂ × δspÞðp̂0 · δsp0 Þ� þ fss;5l ½ðp̂ · δspÞðp̂0 · δsp0 Þ − ðp̂ × δspÞðp̂0 × δsp0 Þ�Þg ð7Þ

is the spin-spin interaction. We denote by θpp0 ≡ θp0 − θp
the relative angle between p̂ and p̂0, and write a × b≡ ẑ ·
ða × bÞ for the cross product of two in-plane
vectors.

Equations (5)–(7), the first main result of this work,
represent the most general short-range two-body interac-
tion in a helical FL consistent with translation, rotation, and
time-reversal symmetries. The interaction is specified by
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ten real Landau parameters for each value of the relative
angular momentum l ¼ 0; 1; 2;…: one charge-charge
parameter fccl , four spin-charge parameters fsc;1l ;…; fsc;4l ,
and five spin-spin parameters fss;1l ;…; fss;5l . This stands in
contrast to the two Landau parameters fsl (spin symmetric)
and fal (spin antisymmetric) in a conventional FL [1],
which would correspond to fsl ¼ fccl and fal ¼ 1

4
fss;1l ¼

1
4
fss;2l in the absence of spin-orbit coupling. In particular,

spin-orbit coupling allows for a nonzero spin-charge
interaction (6), which would be forbidden by separate
spatial and spin rotation symmetries in a conventional FL.
The spin-spin interaction (7) also exhibits novel features:
fss;1l ≠ fss;2l in general, which corresponds to an XXZ
interaction with Ising anisotropy rather than the conven-
tional SUð2Þ-symmetric Heisenberg interaction, fss;3l is a
Dzyaloshinskii-Moriya interaction, and fss;4l , fss;5l are
anisotropic spin-spin interactions similar to those found
in compass models [22], but with a continuous rather than
discrete spin-orbit rotation symmetry.
While Eqs. (5)–(7) in conjunction with Eq. (1) correctly

describe the helical FL, in the spirit of FL theory one can go
one step further and only retain electron states on the Fermi
surface. Because of the strong spin-orbit coupling present
in the Dirac Hamiltonian (2), such electrons are annihilated
by the operator ψp� ¼ 1ffiffi

2
p ðie−iθpcp↑ � cp↓Þ, where positive

(þ) helicity corresponds to a positive Fermi energy ϵF > 0
above the Dirac point, and negative (−) helicity corre-
sponds to a negative Fermi energy ϵF < 0. Inverting
this relation, one can express the spin eigenoperators
cpσ in terms of the helicity eigenoperators ψp� as
cp↑ ¼ ðie−iθp= ffiffiffi

2
p Þðψpþ þ ψp−Þ and cp↓¼ 1ffiffi

2
p ðψpþ−ψp−Þ.

Choosing ϵF > 0 for definiteness, the Fermi surface con-
sists exclusively of electron states of positive helicity, such
that one may wish to drop the negative helicity eigenop-
erators ψp− entirely from these expressions for cp↑ and cp↓.
Applying this procedure to Eq. (1) yields a Landau func-
tional for an effectively spinless FL theory

δĒ½δn̄p� ¼
Z

đpϵ0pδn̄p þ
1

2

X∞
l¼0

Z
đpđp0f̄l cos lθpp0δn̄pδn̄p0 ;

ð8Þ

where ϵ0p ¼ vFjpj is the dispersion relation of positive

helicity quasiparticles, δn̄p ¼ n̄p − n̄ð0Þp with n̄p ≡
hψ†

pþψpþi is the distribution function for these quasipar-
ticles, and f̄l are effectively spinless, projected Landau
parameters related to the ten unprojected Landau param-
eters previously discussed by

f̄l ¼ fccl − fsc;3l −
1

4
fss;5l þ 1

8
ðfss;1l−1 − fss;3l−1 þ fss;1lþ1 þ fss;3lþ1Þ;

ð9Þ

for l ¼ 0; 1; 2;…, with the definition fss;1−1 ¼ fss;3−1 ≡ 0. The
quasiparticle charge and spin densities (4) are given in
terms of δn̄p by

δρp ¼ δn̄p; δsip ¼
1

2
ϵijp̂jδn̄p; i¼ x; y; δszp ¼ 0;

ð10Þ

where the last two equalities express spin-momentum
locking in the xy plane. Equations (8)–(10), together with
the definitions of the unprojected Landau parameters in
Eqs. (5)–(7), are the second main result of this work.
Before deriving the physical properties of the helical FL

from the projected Landau functional (8), we pause to
discuss a number of interesting features of the relationship
(9) between projected and unprojected Landau parameters.
The unprojected Landau parameters fsc;1l , fsc;2l , and fss;4l do
not enter the projected interaction because spin and
momentum are perpendicular on the Fermi surface
(p̂ · δsp ¼ 0) due to spin-momentum locking. The param-
eter fsc;4l does not enter either because it produces a
projected interaction that is odd under p↔p0, which is
inconsistent with particle indistinguishability. The last term
on the right-hand side of Eq. (9) shows that projection to
the Fermi surface can effectively raise or lower the angular
momentum of the unprojected interaction. For example, for
l ¼ 1 one has

f̄1 ¼ fcc1 − fsc;31 −
1

4
fss;51 þ 1

8
ðfss;10 − fss;30 þ fss;12 þ fss;32 Þ;

ð11Þ

that is, an isotropic, s-wave (l ¼ 0) microscopic interaction
can produce an anisotropic, p-wave (l ¼ 1) effective
interaction in the projected theory. This can be seen as
the particle-hole counterpart to the effective p-wave inter-
action in the Bardeen-Cooper-Schrieffer (BCS) channel
produced on the doped surface of a 3D topological
insulator by a microscopic s-wave BCS interaction [23].
As in standard FL theory, many physical properties of

the helical FL can be derived from the projected Landau
functional (8). The simplest property is Luttinger’s theorem
[24], i.e., the relation pF ¼ ffiffiffiffiffiffiffiffi

4πn
p

between Fermi momen-
tum pF and total density n of quasiparticles, which is also
equal to the total density of electrons (defining a system
with pF ¼ 0 as the vacuum). That Luttinger’s theorem
holds in its original form despite the presence of strong
spin-orbit coupling is a consequence of the existence of a
single helical Fermi surface, which is only possible on the
surface of a 3D topological phase. Interactions in topo-
logically trivial spin-orbit coupled systems such as the
Rashba 2D electron gas can individually renormalize the
Fermi momenta of the two spin-split Fermi surfaces [16].
Other equililibrium properties of the helical FL can be
calculated from the quasiparticle energy ϵp, defined as the
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functional derivative of the Landau functional with respect
to the distribution function,

ϵp ¼
δĒ
δn̄p

¼ ϵ0p þ
X∞
l¼0

Z
đp0f̄l cos lθpp0δn̄p0 : ð12Þ

From Eq. (12) one can follow the standard FL approach
[19] to derive the electronic specific heat coefficient γ ≡
cv=T and electronic compressibility κ of the helical FL at
zero temperature

γ ¼ 1

3
π2k2BρðϵFÞ; κ ¼ ρðϵFÞ

n2
1

1þ F̄0

; ð13Þ

where we define dimensionless Landau parameters F̄0 ≡
ρðϵFÞf̄0 and F̄l ≡ 1

2
ρðϵFÞf̄l, l ¼ 1; 2; 3;…, with ρðϵFÞ ¼

ϵF=2πv2F the density of states of the helical FL at the Fermi
energy ϵF ¼ vFpF. The compressibility becomes negative
for F̄0 < −1, signaling an instability towards phase sepa-
ration [25]. Unlike in a standard FL, here this condition can
be reached not only for attractive density-density inter-
actions, but also as a result of spin-charge or even purely
spin-spin interactions, given the relation (9) between the
projected and unprojected Landau parameters.
The renormalized Fermi velocity vF differs in general

from the Fermi velocity of noninteracting electrons v0F.
This is similar in spirit to the renormalization of the
quasiparticle mass in a standard FL. The derivation of
the latter relies on Galilean invariance, while in the helical
FL, Galilean invariance is broken by spin-orbit coupling.
However, adiabatic continuity still implies that the total
flux of quasiparticles is equal to the total flux of electrons
[1]. The latter is calculated from the quantum-mechanical
velocity operator for electrons ve ¼ v0Fðẑ × σÞ, which, for
momentum-independent microscopic interactions [26], is
the same as in the absence of interactions [28]: it is a
function of the noninteracting Fermi velocity, rather than
the renormalized one. The total quasiparticle flux is a
function of the quasiparticle velocity vqp ¼ ∇pϵp. Equating
the two fluxes yields a relation between the two Fermi
velocities [19]

v0F
vF

¼ 1þ F̄1; ð14Þ

which is the helical FL analog of the relation ðm�=mÞ ¼
1þ 1

3
Fs
1 between renormalized m� and noninteracting m

quasiparticle masses in a standard FL [1].
The spin susceptibility introduces some added subtleties:

unlike in a standard FL, it is not, strictly speaking, a Fermi
surface property. Indeed, it depends explicitly on a high-
energy cutoff Λ already in the noninteracting limit [29,30].
In a standard FL, one can always choose the spin
quantization axis to be parallel to the applied magnetic

field B, such that the quasiparticle energy shift δϵpσ ¼
1
2
gμBBσ due to Zeeman coupling (g is the g factor, μB is the

Bohr magneton) is diagonal in the spin basis σ ¼ �1. The
resulting change in occupation numbers is localized to the
Fermi surface in the zero-field limit, causing the spin
susceptibility to be a Fermi surface property. In the helical
FL, there is no freedom to choose the spin quantization axis
due to spin-momentum locking, and the Zeeman coupling
contains off-diagonal terms in the helicity basis. The
projected FL theory (8), which projects out negative
helicity states, cannot take these off-diagonal terms into
account and thus should not be expected to yield exact
results for the spin susceptibility. Nevertheless, one can
calculate the Fermi surface contribution to the spin sus-
ceptibility using Eq. (8) and compare it in the noninteract-
ing limit to an exact calculation that takes both helicities
into account. The spin susceptibility tensor χij is found to
be diagonal with in-plane χxx ¼ χyy and out-of-plane χzz
components given by

χxx ¼
1

8
g2μ2BρðϵFÞ

1

1þ F̄1

; χzz ¼ 0; ð15Þ

in the projected FL theory, and

χxx ¼
1

8
g2μ2BρðΛÞ; χzz ¼

1

4
g2μ2B½ρðΛÞ − ρðϵFÞ�; ð16Þ

for the noninteracting Dirac surface state, including both
helicities [19]. Thus, in the noninteracting limit, Eqs. (15)
and (16) agree in the formal limit of large Fermi
energy ϵF → Λ. By contrast with the spin susceptibility
of the standard FL, which is renormalized by the spin-
antisymmetric l ¼ 0 Landau parameter Fa

0, here it is
renormalized by a l ¼ 1 Landau parameter due to spin-
momentum locking on the Fermi surface.
Pomeranchuk instabilities [31] are instabilities of the

Fermi surface towards spontaneous, static distortions
of its shape. To study such instabilities in the helical FL,
one characterizes distortions of the Fermi surface by an
angle-dependent Fermi momentum, expanded in angular
momentum components,

pFðθÞ − pF ¼
X∞
l¼−∞

Aleilθ; ð17Þ

where A−l ¼ A�
l because pFðθÞ is real. Substituting this

expression into the Landau functional (8), one finds that the
energy δĒ remains positive, and thus the helical FL remains
stable, if and only if [19]

F̄l > −1; ð18Þ
for all l ¼ 0; 1; 2;…. This is the same as Pomeranchuk’s
original criterion in 2D, but applied this time to the
projected Landau parameters, which are nontrivial
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functions of the unprojected ones. It contains as special
cases the instability towards phase separation, already seen,
as well as an instability towards in-plane magnetic order
[32] for F̄1 → −1 that is signaled by divergences of the in-
plane spin susceptibility (15) and the renormalized Fermi
velocity (14). The latter divergence also accompanies the
l ¼ 1 spin-symmetric Pomeranchuk instability of the stan-
dard FL [33]. The l ¼ 2 instability is towards quadrupolar
distortions of the helical Fermi surface, characterized in the
projected FL theory by a nonzero value of the traceless,
symmetric nematic order parameter Q̄ij ¼

R
đpQ̄ijðpÞ,

where Q̄ijðpÞ ¼ ð2p̂ip̂j − δijÞδn̄p. This effectively spinless
order parameter is identical to the one that describes
nematic order in a standard spin-degenerate FL [34]. In
the original unprojected theory, however, this translates into
a nonzero value of Qij ¼

R
đpQijðpÞ, where

QijðpÞ ¼ p̂iδs
j
p þ p̂jδsip − δijp̂ · δsp ð19Þ

is a quadrupolar order parameter involving both spatial and
spin degrees of freedom that was recently discussed in the
context of possible instabilities of surface Majorana fer-
mions in the topological superfluid 3He-B [35] and 3D
spin-orbit coupled metals [17,36]. Thus the quadrupolar
distortion of a helical Fermi surface is necessarily accom-
panied by a time-reversal invariant form of magnetic order
similar in spirit to spin nematic order [37].
Nonequilibrium properties of the helical FL such as

collective modes can also be studied using the projected FL
theory, assuming that the relaxation-time approximation is
valid such that scattering between states of different
helicities can be neglected. In the hydrodynamic regime
ωτ ≪ 1, where τ is the quasiparticle collision time, the
helical FL supports ordinary sound waves (first sound) with
velocity [19]

c1 ¼ vF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1þ F̄0Þð1þ F̄1Þ

r
; ð20Þ

while in the collisionless regime ωτ ≫ 1 a zero sound
mode may exist under certain conditions [28]. If F̄0 > 0
only is nonzero, the zero sound velocity is given in the
limits of strong and weak interactions by [19]

c0 ≈ vF

ffiffiffiffiffiffiffiffiffi
1

2
F̄0

r
; F̄0 → ∞; ð21Þ

c0 ≈ vF

�
1þ 1

2
F̄2
0

�
; F̄0 → 0: ð22Þ

We conclude by discussing prospects for the experimen-
tal determination of the projected Landau parameters F̄l.
ARPES can determine pF, which, via Luttinger’s theorem,
yields the density n. Using Eq. (13), F̄0 could then be
inferred from measurements of the heat capacity and
electronic compressibility of the surface states. The latter

can in principle be determined directly from the ARPES
data or via single electron transistor microscopy [38]. To
determine F̄1, one could perform a transient spin grating
experiment [28] to generate a spin-density wave with
momentum q and transverse amplitude sTq . Because of
spin-momentum locking, this will induce a density wave at
the same momentum with amplitude nq. Assuming that
Coulomb interactions are screened, the existence of an
undamped sound mode at frequency ω ¼ csq implies a
relation between the two amplitudes [19]

sTq
nq

¼ 1

1þ F̄1

cs
vF

; ð23Þ

where cs is either c1 or c0 depending on whether one is
in the hydrodynamic or collisionless regime. Using
Eqs. (20)–(22) one can extract F̄1 from a measurement
of the amplitude ratio sTq=nq and previous knowledge of F̄0.
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