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We consider models of identical pulse-coupled oscillators with global interactions. Previous work
showed that under certain conditions such systems always end up in sync, but did not quantify how small
clusters of synchronized oscillators progressively coalesce into larger ones. Using tools from the study of
aggregation phenomena, we obtain exact results for the time-dependent distribution of cluster sizes as the
system evolves from disorder to synchrony.
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In one of the first experiments on firefly synchronization,
the biologists John and Elisabeth Buck captured hundreds
of male fireflies along a tidal river near Bangkok and then
released them at night, fifty at a time, in their darkened
hotel room [1]. They observed that “centers of synchrony
began to build up slowly among the fireflies on the wall. In
one area we would notice that a pair had begun to pulse in
unison; in another part of the room a group of three would
be flashing together, and so on.” Synchronized groups
continued to emerge and grow, until as many as a dozen
fireflies were blinking on and off in concert. The Bucks
realized that the fireflies were phase shifting each other
with their flashes, driving themselves into sync.
Here we study stylized models of oscillators akin to the

fireflies, in which synchrony builds up stepwise, in expand-
ing clusters. By borrowing techniques used to analyze
aggregation phenomena in polymer physics, materials
science, and related subjects [2,3], we give the first
analytical description of how these synchronized clusters
emerge, coalesce, and grow. We hasten to add, however,
that the models we discuss are not even remotely realistic
descriptions of fireflies; they are merely intended as
tractable first steps toward understanding how clusters
evolve en route to synchrony.
Our work is part of a broader interdisciplinary effort

[4,5]. Oscillators coupled by sudden pulses have been used
to model sensor networks [6–10], earthquakes [11,12],
economic booms and busts [13], firing neurons [14,15],
and cardiac pacemaker cells [16]. Diverse forms of col-
lective behavior can occur in these pulse-coupled systems,
depending on how the oscillators are connected in space.
Systems with local coupling often display waves [17,18] or
self-organized criticality [11,19,20], with possible rel-
evance to neural computation [15] and epilepsy [21]. In
contrast, systems with global coupling, where every oscil-
lator interacts equally with every other, tend to fall into
perfect synchrony. Rigorous convergence results have been
proven for this case [20,22–25]. But the techniques used

previously have not revealed much about the transient
dynamics leading up to synchrony—the opening and
middle game, as opposed to the end game. Aggregation
theory offers a new set of tools to explore this prelude to
synchrony.
Exact results for the transient dynamics can be obtained

in at least two cases. In the Supplemental Material [26], we
apply aggregation theory to the deterministic Peskin model
[16], assuming the oscillators rise linearly to threshold and
fire pulses of size 1=N, where N ≫ 1 is the number of
oscillators. A simplified stochastic version of this model
yields similar results, but because it illustrates the main
ideas more clearly we present it here in the main text. This
toy model, which we call scrambler oscillators, consists of
N identical integrate-and-fire oscillators coupled all to all.
Each oscillator has a voltagelike state variable x that
increases linearly according to _x ¼ 1, rising from a baseline
value of 0 to a threshold value of 1. Whenever any oscillator
reaches threshold, it fires and does three things.
(i) It kicks every oscillator (and every synchronous cluster
of oscillators) to a new random voltage, independently and
uniformly—in this sense, it scrambles the other oscillators.
However, no scrambling occurs within a cluster; all
oscillators at the same voltage get kicked to the same
new voltage. Thus, clusters never desynchronize; once
formed they are preserved by the scrambling procedure.
(ii) The firing oscillator then “absorbs” any scrambled
oscillators that lie within a distance 1=N of threshold, by
bringing them to threshold and thereby synchronizing with
them. To avoid the complications that would be caused by
chain reactions of firings, we assume that the oscillators
being brought to threshold do not get to fire until the next
time they reach threshold. (iii) The oscillator that fired
resets to x ¼ 0 along with the oscillators it absorbed.
If a cluster of j oscillators does the firing, the same rules

apply, except that now any oscillators within a distance j=N
of threshold get absorbed. The assumed proportionality to j
is natural, if each member of the cluster contributes to the
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pulse strength. We study other plausible coupling rules
in Ref. [26].
The motivation for this scrambler model is that it

leads to the simplest possible mean-field approximation.
In the infinite-N limit, we would like clusters of every
size to be uniformly distributed in voltage at all times.
This convenient property would greatly ease the deri-
vation of the rate equations for the cluster kinetics. As
we will see below, the predictions that follow from this
approximation agree reasonably well with simulations.
(For finite N, these assumptions break down at large
times and for large clusters, limitations that we analyze
in Ref. [26]).
Assume the initial voltages xi, for i ¼ 1;…; N, are

independent and uniformly distributed. At first, nothing
interesting happens. The oscillators increase their voltages
without interacting. But then one oscillator reaches thresh-
old and fires. The remaining oscillators get scrambled,
and perhaps some get absorbed. Then another oscillator
fires, and so on. After a while, the system has formed
clusters of various sizes.
Let NjðtÞ denote the number of clusters of size j at time

t. Thus there are N1ðtÞ singleton oscillators, N2ðtÞ pairs of
synchronized oscillators, N3ðtÞ triplets, and so on. The Nj
are correlated random quantities. They are correlated
because oscillators belonging to clusters of one size are
unavailable to clusters of another size, and they are random
because of the randomness in the initial conditions and the
scrambling procedure. It does not seem feasible to under-
stand the time evolution of the Nj unless they are so large
that their fluctuations from one random realization to
another are negligible.
So assume from now on that Nj ≫ 1 for all j and replace

these random quantities by their ensemble averages. Let
cj ¼ N−1hNji denote the average cluster densities. One
hopes that relative fluctuations are small; more precisely,
N−1Nj ¼ cj þOðN−1=2Þ. An even stronger assumption is
that the densities of different subpopulations are asymp-
totically uncorrelated: N−2NiNj ¼ cicj þOðN−1=2Þ.
These cj allow us to define a natural disorder parameter,

given by the total density cðtÞ ¼ P
jcjðtÞ. It measures the

extent of the system’s fragmentation. To see this, note that
at t ¼ 0 each oscillator is alone; only clusters of size 1 exist.
Accordingly c1ð0Þ ¼ 1 and all other cjð0Þ ¼ 0 for j > 1.
Hence cð0Þ ¼ 1, correctly indicating that the system starts
out maximally fragmented. At the opposite extreme, as
t → ∞ only one giant cluster of synchronized oscillators
exists. The system is then minimally fragmented: cðtÞ ¼
1=N → 0 as N → ∞.
To derive a rate equation for the decline of cðtÞ, let Ri

be the rate at which clusters of size i fire, for i ¼ 1;…; N,
and let Li be the number of clusters lost to absorption in
each such firing. Then _c ¼ −

P
iRiLi.

To find Li, recall that when a cluster of size i fires, all the
other clusters get assigned a new voltage uniformly at

random. Moreover, any clusters assigned to the interval
½1 − i=N; 1Þ get brought to threshold and absorbed. Since
the voltages of these other clusters are uniformly distributed
on [0,1], a fraction i=N of them will be absorbed. There
are

P
jNj clusters in total. Hence the number absorbed

is Li ¼ ði=NÞPjNj ¼ i
P

cj ¼ ic.
The rate Ri takes more work to calculate. Since some

clusters get absorbed, not every cluster gets the chance to
fire. We must account for this depletion when calculating
Ri. First consider the background rate of firing of clusters of
size i in the absence of absorptions. In other words, pretend
for a moment that when an i cluster fires, it simply
scrambles every other cluster and restarts its own cycle
without absorbing anyone. Call this background rate R0

i .
Since all oscillators move with velocity vi ¼ _xi ¼ 1, and
since the cluster density is ci, the corresponding back-
ground rate of firing is R0

i ¼ civi ¼ ci. Next, to find the
actual Ri, we must subtract from R0

i the rate at which
clusters of size i are being absorbed and hence deprived of
their chance at firing. Call this absorption rate Ra

i . Clusters
of size i are absorbed when clusters of size j fire, for
j ¼ 1;…; N, taking a fraction j=N of the uniformly
distributed i clusters along with them. Since there are Ni
clusters of size i and the j clusters fire at rate Rj, the total
rate at which i clusters are being absorbed is given
by Ra

i ¼
P

jðj=NÞNiRj ¼
P

jjciRj ¼ ci
P

jRj.
Putting all this together gives Ri ¼ R0

i − Ra
i ¼

ci − ci
P

jjRj ¼ cið1 −
P

jjRjÞ. Let β ¼ 1 −
P

jjRj.
Note that β is the same for all i, which enables it to be
determined self-consistently, as follows. From Ri ¼ βci
we obtain β ¼ 1 −

P
jjRj ¼ 1 −

P
jðβcjÞ. Now invoke

the identity
P

jjcj ¼ jðNj=NÞ ¼ 1, which expresses con-
servation of oscillators. Solving for β then gives β ¼ 1=2
and, therefore, Ri ¼ ci=2.
Next, plug the expressions derived for Ri and Li

into the rate equation _c ¼ −
P

iRiLi. The result is _c ¼
−
P

iðci=2ÞðicÞ ¼ −ðc=2ÞPiici ¼ −c=2. Recalling that
cð0Þ ¼ 1, we conclude that

cðtÞ ¼ expð−t=2Þ: ð1Þ

Figure 1 shows this result matches simulations.
How do the individual cluster densities ci behave? To

derive their rate equations, note that since the voltage space
is the interval [0,1], a segment of length N−1 contains on
average Nc × N−1 ¼ c clusters. In fact, the probability that
it contains n clusters (of any sizes) is given by the Poisson
distribution: Πn ¼ cne−c=n!. This is the mathematical
expression of the assumption that clusters are distributed
randomly without correlations.
With this in mind, let us solve for c1ðtÞ, the density of

singletons. It is the easiest cjðtÞ to analyze, since it can only
decrease. Two mechanisms decrease c1ðtÞ: (i) The loss of a
firing singleton when it absorbs a cluster of any size, and
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(ii) the loss of p > 1 absorbed singletons, when a cluster of
any size fires.
Considermechanism (i). SinceRi ¼ ci=2 as shownabove,

singletons fire at a rate R1 ¼ c1=2. When they fire, they
absorb any cluster lying in the voltage segment ½1 − 1=N; 1Þ.
The probability that this segment contains one or more
clusters is, according to the Poisson distribution, 1 − e−c.
In this case, the firing singleton is lost by its absorption
of a cluster, thus decreasing N1 by 1. Otherwise N1 is
unchanged. Hence singletons are lost by mechanism (i) at
an expected rate ðc1=2Þ½1 × ð1 − e−cðtÞÞ þ 0 × e−cðtÞ� ¼
ðc1=2Þ½1 − e−cðtÞ�. Note: we only account for the loss of
the firing singleton here; any singletons it absorbs are
accounted for in the following mechanism (ii).
Suppose p singletons lie in the interval ½1 − j=N; 1Þ

when a cluster of size j fires, for j ¼ 1;…; N. This event
happens with probability e−jc1ðjc1Þp=p!, and when it does,
it consumes p singletons. (If a singleton did the firing, the
loss would be pþ 1. However, the loss of the firing
singleton was already counted in mechanism (i). So the
consumption factor of p for each firing j cluster is valid
even for j ¼ 1.) As before, j clusters fire at a rate
Rj ¼ cj=2. Hence, singletons are lost by mechanism (ii) at
a rate

X
j≥1

cj
2
×
X
p≥1

p
ðjc1Þpe−jc1

p!
¼ c1=2: ð2Þ

Summing the loss rates from (i) and (ii) gives

dc1
dt

¼ −
c1
2
ð2 − e−cðtÞÞ: ð3Þ

This equation has a closed-form solution in terms of
exponential integrals:

c1ðtÞ ¼ exp ( − tþ Eið−1Þ − Eið−e−t=2Þ); ð4Þ
where we have used the initial condition c1ð0Þ ¼ 1.
Figure 1 shows good agreement between the theoretical
and numerical c1ðtÞ.

For i > 1, the rate equation for ci includes gain terms as
well as loss terms. Clusters of size i > 1 can be created
when two or more smaller clusters coalesce, or destroyed
when they themselves coalesce with at least one other
cluster. The loss term is a straightforward generalization of
that for c1, and is given by ðci=2Þ½2 − e−icðtÞ�.
To find the gain term, imagine that a cluster of size k

fires. The segment ½1 − k=N; 1Þ may contain a1 clusters of
size 1, a2 clusters of size 2, etc. This event happens with
probability ½ðkc1Þa1=a1!�e−kc1 × ½ðkc2Þa2=a2!�e−kc2 × � � �
(where we are using the assumption that clusters of different
sizes are independent as well as Poisson distributed). If the
segment contains a combination of clusters such that
kþ a1 þ 2a2 þ 3a3 þ � � � ¼ i, then a cluster of size i will
form. We sum over all such combinations for a cluster of
size k firing, and then sum over all k, to get the rate at which
clusters of size i are created:

Xi−1
k¼1

ck
2
e−kc

X
a1þ2a2þ���¼i−k

�Y
p≥1

ðkcpÞap
ap!

�
: ð5Þ

Combining the loss and gain terms, and transferring
cie−ic into the gain term, we finally obtain

_ci ¼ −ci þ
Xi

k¼1

ck
2
e−kc

X
P

pap¼i−k

�Y
p≥1

ðkcpÞap
ap!

�
: ð6Þ

We see from the sum that the Eqs. (6) are recursive. They
can be solved one by one, though not analytically, so we
resort to numerical integration. Figure 2 shows that the
theoretical and simulated ci agree.
Although we cannot find all the ciðtÞ explicitly, we can

get their moments MnðtÞ ¼
P

jj
ncjðtÞ through the use

of a generating function. We already know two moments:
M0ðtÞ ¼ cðtÞ, given by Eq. (1), and M1 ¼ 1. A few of the
higher moments are

FIG. 2 (color online). Theoretical and simulated cluster den-
sities c2ðtÞ through c5ðtÞ. Solid lines show theoretical predictions
computed from numerical integration of Eq. (6). Data points
show simulation results for N ¼ 5 × 104 oscillators.

FIG. 1 (color online). Theoretical and simulated cðtÞ and c1ðtÞ.
Solid lines show theoretical curves obtained analytically (see
text). Data points show simulation results forN ¼ 104 oscillators.
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M2ðtÞ ¼ e3t=2;

M3ðtÞ ¼ 7e7t=2 − 6e3t;

M4ðtÞ ¼
448

5
e5t − 128e9t=2 þ 217

5
e15t=4 − 4e27t=8: ð7Þ

These and further results are discussed in the Supplemental
Material [26].
We also studied two modifications of the scrambler

model. For example, suppose that when a cluster of size j
fires, it absorbs all oscillators within a distance kj=N of
threshold, where k > 0 is a tunable coupling strength.
Or suppose that the pulse strength is k=N, independent of
the size j of the firing cluster. We discuss both cases in
Ref. [26]. In the latter case the disorder parameter cðtÞ
decays algebraically rather than exponentially. This makes
sense physically: by assuming that larger clusters no longer
fire larger pulses proportional to their size, we cut the
positive feedback loop underlying the exponential growth
of synchrony in the original scrambler model.
The stochastic scrambler model approximates the deter-

ministic models studied by Peskin [16] and Mirollo and
Strogatz [22]. In those models, when a cluster of size j fires
it adds a voltage pulse jϵ to every other oscillator, or pulls
it up to threshold, whichever is less. For the case where
ϵ ¼ 1=N and the charging curve is linear, we show in
Ref. [26] that these deterministic systems can also be
analyzed by the methods above. The main new feature is
that cðtÞ and the cluster densities ciðtÞ become piecewise
linear. But their overall shapes still resemble those seen in
the scrambler model.
Intuitively, the piecewise linearity in the deterministic case

arises because the speed of each oscillator, and the effect of a
pulse on each oscillator, is the same. Hence the oscillators, or
clusters of oscillators, maintain their initial ordering; they all
march forward through [0,1] in a line with no passing. This
property then implies, in a mean-field sense discussed in
Ref. [26], that the oscillators condense into clusters whose
size doubles periodically. At the end of the first period, all
oscillators synchronize into pairs spaced equally apart. At
the end of the second period, those pairs merge into clusters
of size 4, and so on. Moreover, the clusters begin each period
evenly spaced from each other (again, in a mean-field sense
where fluctuations are neglected), which yields the piecewise
constant firing rate mentioned above.
One limitation of our analysis, for both the scrambler and

deterministic models, is that each oscillator obeys _xi ¼ 1
between firings. Such linear sawtooth waveforms are
reasonable for the oscillators used in sensor networks
[8], but not for neurons or cardiac pacemaker cells. In
Ref. [26] we show that our results for the deterministic
model are robust to the addition of small concavity in the
charging curve. But large concavity introduces new effects,
not yet understood theoretically. The analysis becomes
more difficult because clusters are no longer uniformly
distributed as we have assumed throughout.

There are many avenues to explore in future work. It
would be interesting to study cluster kinetics in oscillator
systems with local coupling, network structure, hetero-
geneity, delays, and other realistic features. Several of these
features would break clusters apart, and so would require
including fragmentation processes in the analysis. By
incorporating suitable new loss and gain terms in the rate
equations, one could perhaps derive useful estimates for
synchronization speeds in more complex but random net-
works where synchronization is guaranteed but speed
estimates are lacking [27].
Another possible application concerns the detection of

network topology. Arenas et al. showed that in the
Kuramoto model, the time course of cluster formation en
route to synchronization can be used to shed light on a
network’s topology [28] and community structure [29].
While the mean-field approach used above is suitable for
homogenous topologies, extensions of our approach using
degree distributions might prove useful in probing a net-
work’s hidden structure.
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