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The precision of the CP phases 2β and 2βs determined from the mixing-induced CP asymmetries in
Bd → J=ψKS and Bs → J=ψϕ, respectively, is limited by the unknown long-distance contribution of a
penguin diagram involving up quarks. The penguin contribution is expected to be comparable in size to the
precision of the LHCb and Belle II experiments and, therefore, limits the sensitivity of the measured
quantities to new physics. We analyze the infrared QCD structure of this contribution and find that all soft
and collinear divergences either cancel between different diagrams or factorize into matrix elements of local
four-quark operators up to terms suppressed by ΛQCD=mψ, where mψ denotes the J=ψ mass. Our results,
which are based on an operator product expansion, allow us to calculate the penguin-to-tree ratio P=T in
terms of the matrix elements of these operators and to constrain the penguin contribution to the phase 2β as
jΔϕdj ≤ 0.68°. The penguin contribution to 2βs is bounded as jΔϕ0

s j ≤ 0.97°, jΔϕ∥
s j ≤ 1.22°, and jΔϕ⊥

s j ≤
0.99° for the case of longitudinal, parallel, and perpendicular ϕ and J=ψ polarizations, respectively. Further,
we place bounds on jΔϕdj for Bd → ψð2SÞKS and the polarization amplitudes in Bd → J=ψK�. In our
approach, it is further possible to constrain P=T for decays in which P=T is Cabibbo unsuppressed, and we
derive upper limits on the penguin contribution to the mixing-induced CP asymmetries in Bd → J=ψπ0,
Bd → J=ψρ0, Bs → J=ψKS, and Bs → J=ψK�. For all studied decay modes, we also constrain the sizes of
the direct CP asymmetries.
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Introduction.—The mixing-induced CP asymmetry in
the decay Bd → J=ψKS is the key quantity for measuring
the CP phase of the Bd-B̄d mixing amplitude. Within the

standard model (SM), this CP asymmetry ABd→J=ψKS
CP ðtÞ

determines the angle β ¼ arg½−VtbV�
td=ðVcbV�

cdÞ� of the
unitarity triangle. The B factories BABAR and Belle had

been designed to measure ABd→J=ψKS
CP ðtÞ to a high precision

to probe the Kobayashi-Maskawa (KM) mechanism of CP
violation. Within the SM, the KM phase is the only source
of CP violation in weak transitions and, therefore, must
correctly describe all CP asymmetries measured in weak
hadron decays. The measurement of β at the B factories
gave us sufficient confidence that the KM mechanism
correctly describes CP violation in both K and Bd decays
and led to the dedication of the 2008 Nobel Prize in Physics
to Makoto Kobayashi and Toshihide Maskawa. Today’s
focus of flavor physics is the search for physics beyond the
standard model which reveals itself in small deviations
from the KM picture. In generic models of new physics,
B-B̄ mixing probes new physics associated with scales
beyond 100 TeV; reducing the uncertainties of standard-
model predictions is, therefore, of utmost importance.
Bs → J=ψϕ is the analogous key mode in the Bs-B̄s

system. Since the unitarity of the Cabibbo-Kobayashi-
Maskawa (CKM) matrix essentially fixes βs ¼
arg½−V�

tbVts=ðVcbV�
csÞ� ¼ 1.0° to a very small value, CP

studies of Bs → J=ψϕ directly probe physics beyond the

SM. The decay amplitude Af for an b̄ → c̄cs̄ decay
Bq → f, where f is a CP eigenstate consisting of a
charmonium state and a light meson, can be written as

Af ¼ λscTf þ λsuPf; ð1Þ

with λsp ¼ V�
pbVps, p ¼ u; c, and

Tf ¼ GFffiffiffi
2

p hfjC1Qc
1 þ C2Qc

2 þ
X
j

CjQjjBqi; ð2Þ

Pf ¼ GFffiffiffi
2

p hfjC1Qu
1 þ C2Qu

2 þ
X
j

CjQjjBqi: ð3Þ

Here, Q1 ¼ s̄αγμð1 − γ5Þqβq̄βγμð1 − γ5Þbα and Q2 ¼
s̄αγμð1 − γ5Þqαq̄βγμð1 − γ5Þbβ are the current-current oper-
ators. The index j labels the penguin operators Qj which
involve the CKM elements λst ¼ −λsc − λsu. While the QCD
penguin operators Q3−6 and Q8G are important for this
Letter (see Ref. [1] for their definition), electroweak
penguin operators have negligible effects. The time-

dependent CP asymmetry A
Bq→f
CP ðtÞ≡ ½ΓðB̄qðtÞ → fÞ−

ΓðBqðtÞ → fÞ�=½ΓðB̄qðtÞ → fÞ þ ΓðBqðtÞ → fÞ� reads

A
Bq→f
CP ðtÞ ¼ Sf sinðΔMqtÞ − Cf cosðΔMqtÞ

coshðΔΓqt=2Þ þ AΔΓq
sinhðΔΓqt=2Þ

: ð4Þ
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Here, ΔMq and ΔΓq are the mass and width difference,
respectively, between the mass eigenstates of the Bq-B̄q

system.Wewrite Sf ≈ −ηf sinðϕq þ ΔϕqÞ, whereCPjfi ¼
ηfjfi and ϕq is the CP phase in the limit Pf ¼ 0. The SM
predictions are ϕd ¼ 2β and ϕs ¼ −2βs. To the first order
in ϵ ¼ jVusVub=ðVcsVcbÞj ≈ 0.02, one has

tanðΔϕÞ≃ 2ϵ sin γRe
Pf

Tf
: ð5Þ

Comparing Eq. (5) [with γ ¼ ð69.7� 2.8Þ°] with the
present experimental world average sinϕd ¼ 0.679�
0.020 [2] (meaning an error of 1.6° for ϕd) shows that
the penguin contribution already matters now and will
certainly do so for future measurements at LHCb and Belle
II. Tf and Pf are nonperturbative multiscale matrix
elements, which defy calculations from first principles
of QCD.
For the prediction of the branching ratio

BðBd → J=ψKSÞ, one only needs Tf, which was addressed
with the method of QCD factorization [3] in Ref. [4]: in the
limit of infinite charm and bottom masses, Tf can be
expressed in terms of the J=ψ decay constant and the Bd →
KS form factor. The result of Ref. [4] underestimates
BðBd → J=ψKSÞ by a factor of 8. This failure, however,
is not surprising, because the corrections to the infinite-
mass limit are of order ΛQCD=ðmcαsÞ and, therefore, are
numerically unsuppressed for the actual value of the charm
mass [3,5]. The standard approach to quantify Pf=Tf in
Bd → J=ψKS uses the approximate SUð3ÞF symmetry of
QCD (or its U-spin subgroup) which relates the decay of
interest to b → cc̄d modes like Bs → J=ψKS and Bd →
J=ψπ0 [6,7]. A drawback of this method is our poor
knowledge of the quality of the SUð3ÞF symmetry in Bd;s→
J=ψX (with X ¼ KS; π0;…) decays. (Comparisons of
branching ratios essentially test SUð3ÞF in Tf only, with
little sensitivity to Pf.) Furthermore, the b → cc̄d control
channels have 20 times smaller statistics than their b → cc̄s
counterparts. SUð3ÞF seemingly fails in Bs → J=ψϕ,
because the ϕ meson cannot be closely approximated by
an SUð3ÞF eigenstate, but is an equal mixture of octet and
singlet.
In this Letter, we present a dynamical calculation of

Pf=Tf which does not assume an approximate SUð3ÞF
symmetry. Our results also permit, for the first time, the
prediction of Sf and Cf for b → cc̄d decays.
Operator product expansion.—For definiteness, we first

specify the discussion to Bd → J=ψKS and return to Bs →
J=ψϕ and other modes in the phenomenology section.
For BðBd → J=ψKSÞ we only need Tf and can neglect the
penguin coefficients. It is useful to express Tf in terms of
the matrix elements of

Q0V ≡ s̄γμð1 − γ5Þbc̄γμc;
Q0A ≡ s̄γμð1 − γ5Þbc̄γμγ5c;
Q8V ≡ s̄γμð1 − γ5ÞTabc̄γμTac;

Q8A ≡ s̄γμð1 − γ5ÞTabc̄γμγ5Tac: ð6Þ

Then, Tf in Eq. (3) becomes Tf ¼ ðGF=
ffiffiffi
2

p ÞhJ=ψKSjC0

ðQ0V −Q0AÞ þ C8ðQ8V −Q8AÞjBdiwithC0¼C2=NcþC1

and C8 ¼ 2C2, where Nc ¼ 3 is the number of colors.
Using next-to-leading order (NLO) Wilson coefficients in
the naive dimensional regularization (NDR) scheme [1,8] at
the scale μ ¼ mψ , one finds C0 ¼ 0.13 and C8 ¼ 2.2. The
smallness of C0 is a well-known numerical accident
entailing that the weak decay produces the (c; c̄) pair
almost in a color octet state. We normalize the matrix
elements (for j ¼ 0; 8) as

hQjVi ¼ V0vj; hQjAi ¼ V0aj; ð7Þ

to the factorized matrix element V0≡hQ0Vifact¼
2fJ=ψmBd

pcmFB→K
1 ðm2

ψÞ¼ð4.26�0.16ÞGeV3. The uncer-
tainty stems from the form factor FB→K

1 ðm2
ψÞ ¼ 0.586�

0.021 [9] and the J=ψ decay constant fJ=ψ ¼
ð0.405� 0.005Þ GeV. mBd

¼ 5.28 GeV and pcm ¼
1.68 GeV are the Bd mass and the three-momentum of
the J=ψ or KS in the Bd rest frame. v0;8; a0;8 depend on μ in
such a way that the μ-dependence of C0; C8 cancels from
physical quantities. When we quote numerical values, we
refer to the choice μ ¼ mψ . The large-Nc counting of our
(complex) hadronic parameters is v0 ¼ 1þOð1=N2

cÞ,
v8; a8 ¼ Oð1=NcÞ, and a0 ¼ Oð1=N2

cÞ. Normalizing the
branching ratio to the experimental value, we find

BðBd → J=ψKSÞ
BðBd → J=ψKSÞexp

¼ ½1� 0.08�j0.47v0 þ 7.8ðv8 − a8Þj2:

ð8Þ

Varying the phase of v8 − a8 between −π and π, one finds
the correct branching ratio for 0.07 ≤ jv8 − a8j ≤ 0.19 if v0
is set to 1. Thus, there is no mystery with the branching
ratio, and the hadronic parameters obey the hierarchy
expected from 1=Nc counting. The terms involving a0
are negligible in view of other uncertainties and are omitted
throughout this Letter.
Pf in Eq. (3) receives contributions from Qu

1;2 and the
penguin operators Qj, j ≥ 3. The matrix elements of the
latter can be trivially expressed in terms of the operators in
Eq. (6). Therefore, this contribution to Pf=Tf only depends
on v8=v0 and a8=v0. Below, we will see that the magnitudes
of these ratios are under control thanks to the 1=Nc
hierarchy of v0; v8; a8 and the information from
BðBd → J=ψKSÞexp. By varying the parameters in the
allowed ranges, we can then find the maximal contribution
of the penguin operators to jΔϕj.
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In order to apply the same strategy to Qu
1;2, we must first

express the up-quark penguin depicted in Fig. 1(a) in terms
of matrix elements of the local operators in Eq. (6). In
Ref. [10], it is argued that a penguin loop flown through by
a hard momentum q [in our case q2 ∼m2

ψ ¼ ð3.1 GeVÞ2]
can be calculated in perturbation theory [“Bander-Soni-
Silverman (BSS) mechanism”]. In Ref. [11], this idea is
used to find an estimate of hQu

2i which leads to an upper
bound on jΔϕj which is smaller than the values found by
SUð3ÞF arguments [7]. In this Letter, we turn the BSS idea
into a rigorous field-theoretic method by proving an
operator product expansion (OPE)

hJ=ψKSjQu
j jBdi ¼

X
k

~Cj;khJ=ψKSjQkjBdi þ � � � ; ð9Þ

with k running over k ¼ 0V; 0A; 8V; 8A. The dots represent
terms suppressed by higher powers of ΛQCD=

ffiffiffiffiffi
q2

p
. The

Wilson coefficients ~Cj;k ¼ ~Cð0Þ
j;k þ ½αsðμÞ=ð4πÞ� ~Cð1Þ

j;k þ � � �
are calculated in perturbation theory to the desired order
in αsðμÞ, with the renormalization scale μ ¼ Oðmψ ; mbÞ. A
similar OPE has been derived to calculate charm-loop
effects in the rare semileptonic decays B → Kð�Þlþl− [12].
Since leptons carry no color charges, this application
involves no four-quark operators like those in Eqs. (6)

and (9). From Fig. 1(a), one finds ~Cð0Þ
j;k ¼ 0 except for

~Cð0Þ
8G;8V ¼ −ðm2

b=q
2Þðαs=πÞ and ~Cð0Þ

2;8V ¼ Pðq2Þ with the
penguin function

Pðq2Þ ¼ 2

3

αs
4π

�
ln

�
q2

μ2

�
− iπ −

2

3

�
: ð10Þ

Inherent to applications of the OPE, as in Ref. [12] or in this
Letter, is the assumption that rescattering effects for values
of q2 far above the partonic pair-production threshold are
correctly described in perturbation theory. Equation (9)
captures all hadronic effects in the ðu; ūÞ → ðc; c̄Þ tran-
sition only if there is no intrinsic (u; ū) component in the
J=ψ wave function (e.g., no J=ψ-ρ0 mixing). A powerful
check of our framework will be the confrontation of our
predictions for b → cc̄d transitions with data.

Proof of factorization.—In order to establish Eq. (9), we
must prove that the coefficients ~Cj;k are infrared (IR) safe.
To this end, we analyze (i) the soft IR divergences of the
two-loop diagrams contributing to hQu

j i, (ii) the collinear
IR divergences of these diagrams, (iii) spectator scattering
diagrams, and (iv) higher-order diagrams in which the large
momentum bypasses the penguin loop (“long distance
penguins”).
(i) An example of a diagram with a soft divergence is

shown in Fig. 1(b). This soft divergence is reproduced by
the corresponding diagram of the effective-theory side (i.e.,
rhs) of Eq. (9), depicted in Fig. 1(c), so that this divergence

factorizes with ~Cð0Þ
j;k and does not affect ~Cð1Þ

j;k . All soft
divergences are from diagrams in which the additional

gluon connects two external lines and cancel from ~Cð1Þ
j;k in

the same way.
(ii) Collinear divergences occur in diagrams in which a

gluon is attached to the line with the strange quark, which
we treat as massless. An example is shown in Fig. 1(d). If l
denotes the loop momentum flowing through the gluon
propagator and ps is the momentum of the external
strange quark, the collinear divergence corresponds to
the region with l2 ¼ 0 and l ∝ ps. We can then reduce the
problem to the study of one-loop diagrams with an
external on-shell gluon: If we sum over all possibilities
to attach this gluon to one of the lines of the LO diagram in
Fig. 1(a), the collinear Ward identity of QCD ensures that
this sum vanishes when the open Lorentz index of the
gluon line is contracted with lμ. This feature ensures that
the collinear divergences of the sum of the two-loop
diagrams vanish. (For a discussion in the context of QCD
factorization see Refs. [3,13,14].) It equally holds for the
effective-theory side of the OPE. The cancellation of
collinear divergences is conceptually identical to the
situation in typical processes in collider physics; further,
it is known to be much simpler (with fewer diagrams to be
discussed) if a physical gauge (with only 2 propagating
gluon degrees of freedom) is adopted.
(iii) Next, we discuss the spectator scattering contribu-

tions: diagrams in which the gluon connects the b or s line

FIG. 1. The LO diagram is shown in (a). The soft IR divergence of the diagram (b) factorizes with the corresponding diagram of the
effective-theory side shown in (c). The diagram (d) is an example of a diagram with a collinear IR divergence. In (e) a spectator
scattering diagram is given.
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with the spectator quark line trivially factorize with the
corresponding diagrams on the effective side. If the gluon
connects the spectator with the gluon line or a charm or up
line, we have to take into account that the squared
momentum in the penguin loop is ðqþ lÞ2 instead of q2.
If the gluon is soft, lμ ∼ ΛQCD, the expansion of the loop
function P around q2 reproduces a term which correctly

factorizes with ~Cð0Þ
j;k up to the term suppressed by ΛQCD=ffiffiffiffiffi

q2
p

. If the gluon is hard collinear, with virtuality l2∼
pcmΛQCD, where pcm ∼ 1.5 GeV is the three-momentum of
the KS or J=ψ in the Bd rest frame, the situation is more
subtle: the LO diagram is suppressed by ΛQCD=pcm,
because the momentum of the spectator quark changes
from zero toOðpcmÞ in the decay, which is penalized by the
light-cone distribution amplitude (LCDA) of the kaon [3].
The asymptotic form of the kaon LCDA, ΦðxÞ ¼
6xð1 − xÞ, where x and 1 − x are the fractions of the kaon
momentum carried by the s̄ and d quarks, favors momen-
tum configurations in which the kaon momentum is
roughly equally shared between the two valence quarks.
While the propagator of the scattered hard-collinear gluon
is suppressed as ∼1=ðΛQCDpcmÞ, the suppression of the LO
diagram is lifted because the spectator momentum is in the
region x ∼ 1=2 favored by the kaon LCDA. To identify
further suppression factors, we first discuss the case that the
gluon connects a charm line with the spectator: counting
q2 ∼m2

ψ and the energies of s̄ and spectator-d quarks as
pcm=2, the penguin loop gives P½ðqþ lÞ2�≃ Pðq2Þþ
ðpcm=mψ ÞP0ðq2Þ. The nonfactorizing piece involving the
derivative P0ðq2Þ comes with a factor of pcm=mψ . The
virtuality of the (anti-)charm propagator is around pcm
entailing a suppression factor of ΛQCD=pcm. Thus, allto-
gether spectator scattering from the charm lines obeys
Eq. (9) up to terms of order ΛQCD=mψ. Next, we discuss the
spectator scattering from the up line, with a sample diagram
depicted in Fig. 1(e). We find that these diagrams are power
suppressed by ΛQCD=mψ. In this respect, these spectator
diagrams differ from the similar photon penguins calcu-
lated in Ref. [15], which involve Pðq2Þ for q2 ∼ 0 rather
than q2 ∼m2

ψ .
(iv) So far, we have assumed that the underlying hard

process is the penguin loop with the hard scale
ffiffiffiffiffi
q2

p
. But it

may also be possible that the hard momentum transfer to
the J=ψ occurs through a hard gluon radiated from the b or

s line, while the penguin loop is a “long-distance penguin”
governed by soft QCD. Such a situation is exemplified by
the diagram in Fig. 1(b) with the left gluon having virtuality
∼m2

ψ . These diagrams, in which the whole weak decay
process occurs with small momentum transfers, have a
suppression factor ðΛQCD=

ffiffiffiffiffi
q2

p
Þ3 stemming from the hard

gluon propagator and an off-shell b quark propagator (or s
quark propagator).
In our power counting in (i)–(iv), we have treated pcm as

an intermediate scale between ΛQCD and mψ and have
found no nonfactorizable nonperturbative effects of order
pcm=mψ . While pcm enters two-loop diagrams through
pb · ps ∼mbpcm, such terms do not come with IR diver-
gences and end up in the NLO corrections to the coef-
ficients ~Cj;k. We find that the counting rule for pcm is
irrelevant, one can reproduce our results above as well for
the limiting cases pcm ∼ ΛQCD and pcm ∼

ffiffiffiffiffi
q2

p
. In particu-

lar, higher orders of the OPE do not involve operators with
derivatives acting on the s̄ field. The same feature was
found for B → Kð�Þlþl− in the last paper of Ref. [12].
The choice q2 ¼ m2

ψ for Pðq2Þ may be altered by adding

a contribution of order ΛQCD to
ffiffiffiffiffi
q2

p
. This shuffles a piece

proportional to ðΛQCD=mψÞP0ðm2
ψ Þ into the coefficient of

the subleading operator s̄γμð1 − γ5ÞTab½□ −m2
ψ �c̄γμTac,

which removes the ambiguity associated with the choice of
q2. At NLO, in αs, one also generates nonzero coefficients
~Cð1Þ
j;k for j ¼ 1 or k ¼ 0A; 8A.
In conclusion, the OPE with the minimal set of operators

in Eq. (7) works, the coefficients in ~Cj;k are IR safe.
Phenomenology.—The penguin amplitude depends on

the Wilson coefficients as

Pf ¼ V0ð2C4 þ 2C6 þ 2C2
~Cð0Þ
2;8V þ C8G

~Cð0Þ
8G;8VÞv8 þ � � � ;

ð11Þ

where the dots represent the terms with v0 and a8 which

have much smaller coefficients. The dependence of ~Cð0Þ
2;8V

[calculated from Fig. 1(a)] on the renormalization scheme
cancels with the scheme dependence of C4 þ C6 in
Eq. (11). In the NDR scheme adopted by us, these penguin
coefficients give a larger contribution to Pf than the

u-penguin loop contained in ~Cð0Þ
2;8V . This is not surprising

because the u-penguin loop enters at NLO, while C4 þ C6

TABLE I. The maximal phase shift of ϕd due to penguin pollution and limits for the CP violation observables Sf and Cf in various
Bd → f decays. Decays into two vector mesons involve different polarization amplitudes, indicated by 0, ∥, and ⊥ [22]. In Sf, for
f ¼ J=ψK�, K� → Ksπ

0 is understood.

Final State J=ψKS ψð2SÞKS J=ψπ0 ðJ=ψρÞ0 ðJ=ψρÞ∥ ðJ=ψρÞ⊥ ðJ=ψK�Þ0 ðJ=ψK�Þ∥ ðJ=ψK�Þ⊥
maxðjΔϕdjÞ ½°� 0.68 0.74 0.85 1.13 0.93
maxðjΔSfjÞ ½10−2� 0.86 0.94 18 22 27 22 1.09 1.45 1.19
maxðjCfjÞ ½10−2� 1.33 1.33 29 35 41 36 1.65 2.19 1.80
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already contributes at LO. The omission of this dominant
LO piece explains the smallness of the result in Ref. [11].
For the prediction of Pf=Tf, we implement the con-

straint from BðB → fÞ exemplified for f ¼ J=ψKS in
Eq. (8) in the following way: adapting a phase convention
in which Af in Eq. (1) is real and positive, we can determine
a8 in terms of V0, v0, v8, and the measured BðB → fÞ
[16,17]. Then, we use this to eliminate a8 from Pf=Tf. For
example, we find

PJ=ψKS

TJ=ψKS

¼ 0.01 − 0.02v0 − ð0.71þ 0.33iÞv8; ð12Þ

for the central value of V0 [quoted after Eq. (7)] and
BðBd → J=ψKSÞ. We vary v8 and v0 in their allowed
ranges jv8j < 1=3 and jv0j ¼ 1� 0.15 with the constraint
that ja8j ≤ 1=3 must be obeyed. The allowed ranges for
Δϕ, Cf, and ΔSf ≡ Sf þ ηf sinϕq are almost symmetric
around zero. We list the upper bounds on their magnitudes
for several decay modes in Tables I and II. The results
include the uncertainties from V0, the branching ratios,
CKM parameters [18], and higher-order terms in our OPE.
For the b → c̄cd decay modes with Cabibbo-unsuppressed
Pf=Tf, the expansion in Eq. (5) has been replaced by the
exact formula (see, e.g., Refs. [6,7]). Our bounds are
conservative, as the considered ranges for v8 and a8 are
wide [permitting even sizable cancellations in Eq. (8)].
From Eqs. (8) and (12), one verifies that any additional
information on magnitude or phase of one of these
parameters will substantially reduce the ranges quoted in
Tables I and II. Our results for Bd → J=ψπ0 favor the Belle
measurement CJ=ψπ0 ¼−0.08�0.17, SJ=ψπ0 ¼ −0.65�
0.22 [19] over the BABAR result CJ=ψπ0 ¼ −0.20� 0.19,
SJ=ψπ0 ¼ −1.23� 0.21 [20]. [In the absence of penguin
pollution, CJ=ψπ0 ¼ 0 and SJ=ψπ0 ¼ − sinð2βÞ ¼ −0.69
�0.02.] In the case of a more precise and nonvanishing
measurement of CJ=ψπ0 , for example, CJ=ψπ0 ¼ −0.10�
0.01, which corresponds to the current world average with a
ten times smaller error, we can also put stronger restrictions
on the shift of the mixing-induced CP violation
jΔSJ=ψπ0 j ≤ 0.13. A measurement of CJ=ψπ0 that is con-
sistent with zero, however, does not improve the bound.
This feature occurs in all decay modes with Cabibbo-
unsuppressed Pf=Tf. The measurements of Sf and Cf for
the Bd → J=ψρ0 polarization amplitudes [21] comply with
the ranges in Table I.
Conclusions.—We have established a factorization for-

mula (to leading power in ΛQCD=mψ ) for the penguin

contribution to the CP-violating coefficients Sf and Cf in
A
Bq→f
CP ðtÞ for final states f containing charmonium and the

related shift Δϕq of the corresponding CP phase. As a
crucial result, the penguin contributions involve the same
hadronic matrix elements as the tree amplitude. This allows
us to constrain Pf=Tf, which determines Sf and Cf, and to
find, e.g., jΔϕdj ≤ 0.68° for Bd → J=ψKS and jΔϕ⊥

s j ≤
0.99° for Bd → J=ψϕ, representing bounds that were
thought to be incalculable from first principles. Novel
territory are our predictions for Sf and Cf in b → cc̄d
decays, in which Pf=Tf is Cabibbo unsuppressed. Future
experimental probes of these predictions will constitute a
powerful test of our theoretical framework, whose key
ingredient is an OPE for the up-quark penguin loop. There
are no similar consistency checks for the standard pre-
dictions of Pf=Tf based on SUð3ÞF symmetry, which,
moreover, cannot be used for Bs → J=ψϕ. Further, we
remark that our results do not depend on any properties of
the charmonium LCDA.
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