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Many physical implementations of qubits—including ion traps, optical lattices and linear optics—suffer
from loss. A nonzero probability of irretrievably losing a qubit can be a substantial obstacle to fault-tolerant
methods of processing quantum information, requiring new techniques to safeguard against loss that
introduce an additional overhead that depends upon the loss rate. Here we present a scalable and platform-
independent protocol for estimating the average loss rate (averaged over all input states) resulting from an
arbitrary Markovian noise process, as well as an independent estimate of detector efficiency. Moreover, we
show that our protocol gives an additional constraint on estimated parameters from randomized
benchmarking that improves the reliability of the estimated error rate and provides a new indicator for
non-Markovian signatures in the experimental data. We also derive a bound for the state-dependent loss rate

in terms of the average loss rate.
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In order to build practical devices for processing and
transmitting quantum information, the rate of decoherence
and other errors must be below certain fault-tolerant
thresholds. In particular, many experimental implementa-
tions of qubits—such as ion traps [1,2], optical lattices [3]
and linear optics [4]—suffer from irretrievable loss; that is,
there is a nonzero probability of the qubit vanishing (as
opposed to leaking to other energy levels). Such a loss of
normalization can be a substantial obstacle to many
quantum information protocols, requiring different error-
correction techniques to achieve fault tolerance [4—6]. For
example, the surface code may not be used directly if there
is any probability of losing a qubit, while for the topo-
logical cluster states, loss rates of less than 1% are required
to avoid impractical overheads [6].

However, there are two substantial challenges in char-
acterizing loss. First, the loss rate may depend on the state
of the qubit, such as when a qubit is encoded in a
superposition of vacuum and single-photon states.
Second, the loss due to imperfect operations has to be
distinguished from the inefficiency of the detector [7].
Quantum process tomography [8,9] could be used to
characterize loss; however, it is inefficient in the number
of qubits and is sensitive to state preparation and meas-
urement (SPAM) errors [10] and so cannot distinguish
between loss due to imperfect operations and inefficient
detectors.

In this Letter, we present a robust and efficient protocol
that characterizes the loss rate due to imperfect operations
averaged over input states. Our protocol is platform
independent, simple to implement and analyze, and only
assumes that the noise is Markovian. We begin by defining
survival rates and then present our protocol and derive the
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associated analytical decay curve under the assumption of
Markovian noise. We then prove that the average loss rate
estimated via our protocol provides a practical bound on the
loss rate for any state. Since our protocol is robust to
SPAM, the choice of state and measurement in our protocol
is unconstrained. However, we discuss two particularly
suitable choices. The first of these allows one of the
parameters in randomized benchmarking [11] to be inde-
pendently estimated, providing a new test for non-
Markovian effects. The first choice also enables the
unitarity metric introduced in Ref. [12] to be estimated
with no additional experimental overhead. The second
choice maximizes the signal, reducing the resources
required to obtain a reliable fit. In addition, we demonstrate
that our protocol produces reliable estimates of loss rates
through a numerical simulation under an error model that
has the greatest variation in loss over states. Finally, we
illustrate how the analytical model breaks down when
applied to systems that have reversible (coherent) leakage
to an ancillary level.

Average survival rates.—In order to distinguish between
inefficient detectors and lossy processes, we now define
survival rates. Many methods for characterizing a process £
(including randomized benchmarking [11,13,14]) assume it
is trace preserving. However, many experimental processes
are not trace preserving, but instead a state p has a survival
rate under &,

Tr[€(p)]

S(plé) = Trp

; (1)

that is less than 1, or, equivalently, a nonzero loss rate
L(p|&) =1—=S8(p|E). Since the trace is linear and any
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unnormalized density matrix is proportional to a unit-trace
density matrix, the survival rate averaged over all states
(hereafter the average survival rate) is simply the
survival rate of the maximally mixed state, that is,
S(E) = S([1/d]1|€). Correspondingly, the average loss rate
is L(E) =1-S8(&).

Experimental protocol—We now present a protocol for
characterizing the average survival rate S(€) in the exper-
imental implementations {£,} of a set of gates G=
{g1, ...,g|g‘} that are at least a unitary 1-design (e.g., the
Pauli or Clifford groups) [15]. For simplicity, we assume
the noise is time- and gate-independent Markovian noise,
so that £, = go& for some fixed map &, where o denotes
composition (i.e., apply &, then g). This approach can be
extended to accommodate time- and gate-dependent noise
and a model of non-Markovian noise by applying the
approaches of Refs. [16—18].

Our protocol for estimating S(E) is as follows.
(1) Choose a sequence length m € N. (2) Choose a random
sequence k = (ky,...,k,) of m integers uniformly at
random, where k; € {1,...,|G|}. (3) Prepare a state p.
(4) Apply the sequence of gates g o...og,. (5) Measure
some operator Q (e.g., a self-adjoint operator or positive-
operator valued measure element). (6) Repeat steps 3-5 to
estimate

Qx =Tr[Qg oEo...0og, o&(p)] (2)

to a desired precision. (7) Repeat steps 2—6 to estimate
ExOx = |g|_mZQk (3)
K

to a desired precision (see, e.g., Ref. [17] for methods to
bound the number of sequences required to obtain a given
precision). (8) Repeat steps 1-7 for multiple m and fit to the
decay curve

ExQx = D(Q)S(p|€)S"~(£). (4)

derived below, to obtain estimates of S(£) and
S(p|€)D(Q), where D(Q) = TrQ/d. (Note that the above
protocol differs from the randomized benchmarking pro-
tocol of Ref. [11] in that no inversion gate is applied prior to
the measurement.)

Results of a numerical simulation of our protocol for a
specific loss model are illustrated in Fig. 1, demonstrating
the robust performance of our protocol.

For the numerical simulation, the set of operations G is
the set of single-qubit Pauli operators, and we modeled the
error by the channel

E(p) = (10)(0] + | 1)(1])p(|0) (0] + o[ 1){1

), )

1 T T T T T

ExQx

1
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m

FIG. 1 (color online). Semilog plot of numerical data for our
protocol demonstrating robust identification of the average loss
rate. The numerical data is obtained for the loss model described
by Eq. (8). The data points are the estimates of E, Q) for
m = 5,10, ..., 100 obtained by sampling 30 random sequences of
single-qubit Pauli operators (unitary 1-design) and the error bars
are the standard errors of the mean. The grey line is the fit to the
model in Eq. (4), obtained using MATLAB’S NLINFIT package,
which gave S(€) = 0.9900(2) and D(Q) = 0.902(8), compared
to the theoretical values S(£) =0.9901 and D(Q) = 0.910,
respectively.

where @ = 0.99. The channel £ corresponds to loss from
the |1) state and, as proven in Proposition 1 below, has the
greatest variation of loss over states. The measurement was
set to 0.87|¢) (¢| + 0.95|pL) (@], where {|p), |p)} is a
randomly chosen orthonormal basis, to model an imperfect
detector.

Analysis.—To derive the decay curve in Eq. (4), note that
averaging over all sequences corresponds to independently
averaging over all g ’s, so that

ExQx = Tr[QGo&o...0GoE(p)]. (6)

where G(p) = |G |‘lzgeggpgT (noting that a unitary chan-
nel corresponds to unitary conjugation). Since G is a unitary
1-design (and a linear map), G(A) = Tr(A)l/d for all d x d
matrices A [15,19]. Therefore, Go&(p) = S(p|€)l/d and
Go&(1/d) = S(&)1/d, so Eq. (6) simplifies to Eq. (4).

The average survival rate obtained via our protocol is one
possible figure of merit that could be used to characterize
loss, with an important alternative being the worst-case
loss. However, as we now prove, the average loss provides
a practical bound for the worst-case loss:

Proposition 1.—For any quantum channel £ and state p
for a d-dimensional system,

L(p|€) < L(&)d.

Moreover, for all d there exist channels £ and states p that
saturate this bound.
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Proof of Proposition 1.—Let p and & be arbitrary states
of and channels for a d-dimensional system. Since the trace
is linear and any valid state can be written as p = 7Trp,
where 7 is a unit-trace density matrix, the survival rate is
independent of Trp, so we assume Trp = 1 without loss of
generality.

Letp' = (I1—p)/(d — 1), which is a valid quantum state
since it is Hermitian and positive semidefinite by con-
struction and has unit trace. Since p’ is a valid quantum
state, the probability of detecting a system in the state p’
after applying & is a true probability and thus

dS(€) = S(pl€) _ Tr[E(N) = E(p)]
d—1 d-1

— T () <1, (7)

where we have used the fact that quantum channels and the
trace are linear. Rearranging and substituting L =1— S
gives the desired bound.

To see that the bound is saturated, fix d and consider the
channel

E(p) = [1+ (a = D]0)(O[]p[1 + (a = D]0)(O]  (8)

for @ € [0, 1]. For this channel,

a? j =
e ={70" 20
so L(1j)1€) = &(1 ~ ) and
1 N\ 1-a
LO =L =155 0

Therefore, there exists a channel £ and a state p such
that L(p|E) = L(E)d. L]

For average survival rates close to 1, the estimate of
S(p|€)D(Q) can be used to directly estimate D(Q) since

S(pl€)D(Q) € ({1 -d[1 = S(E)]}D(Q), D(Q))  (11)

by Proposition 1. Consequently, S(p|E)D(Q)/S(E) will
give an estimate of D(Q) that is accurate to within a factor
of (d —1)L(€). Estimating D(Q) can be used to estimate
the efficiency of the detector as

_ D(Q)
1 _D(Qideal)’ (12)

where Q;4.a and Q are the ideal and actual measurement
operators. That is, 7 is the ratio of observed to expected
detector “clicks,” averaged (independently) over all states.

Choosing states and measurements.—QOur protocol is
robust to SPAM errors in that the choice of the state p and
the measurement operator Q only effect the value of the

constant S(p|E)D(Q). However, there are two choices of O
and p that have particular benefits.

(1) The most useful scenario corresponds to choosing G
to be a unitary 2-design [15] and choosing p, Q = |0)(0] as
in randomized benchmarking [11]. There are two major
advantages to this choice. First, with this choice the same
data can also be used to estimate the unitarity of &, a
quantitative measure of how the noise £ affects the purity of
input states [12]. Second, estimating the constant prefactor
in Eq. (4) with this choice is particularly useful because it
allows an additional and vital constraint to be imposed
when fitting randomized benchmarking data to the fidelity
decay curve. In Ref. [11], it was shown that the fidelity
decay curve is

A&)p" + B(E). (13)

where p is related to the average gate fidelity, £ is the
average error under the convention that the experimental
implementation of g is written as £, = £'og (in contrast to
our choice of £, = gof), and

AE) =T [QS’ (p —%)]

B(E') = Tr [QS’ G)] . (14)

If the alternative convention of writing errors as £'og is
applied to Eq. (6), then the constant prefactor S(p|E)D(Q)
in Eq. (4) becomes B(&’). Since the fidelity decay curve is
in terms of observable properties, it is independent of the
choice of convention, so B(E') = S(p|€)D(Q). Obtaining a
precise estimate of the constant term for randomized
benchmarking is important for two reasons. First, under-
estimating the constant term B(&') [and hence overesti-
mating the coefficient A(£’)] will lead to an overestimate of
the decay parameter p or, equivalently, an underestimate of
the average gate infidelity. That is, underestimating the
constant term will falsely indicate that the gates are
performing better than they actually are. Second, the values
of the constants A and B in randomized benchmarking are
not completely independent: they must satisfy particular
constraints in order to correspond to physical Markovian
noise processes. In particular, for qubits, note that

B(&) - A(€) = Tr[QE(p™)). (15)

where p* is the state whose Bloch vector is antiparallel to
that of p. Therefore, B(E) — A(E) is a probability and so
must be nonnegative if the noise is truly Markovian.
Consequently, if B(E) — A(€) is (strongly) negative, then
either the noise is non-Markovian or strongly gate depen-
dent, so the estimate of the average gate infidelity in
randomized benchmarking is not known to be accurate.
Moreover, if the prefactor S(p|€)D(Q) in Eq. (4) is
estimated by setting m = 1, then the resulting estimate is
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unaffected by the presence of non-Markovian effects
between sequential operations (since there is only one
operation applied). Therefore, if the estimate obtained by
setting m = 1 differs from the estimate obtained from
fitting the randomized benchmarking data under the pro-
tocol of Ref. [11], then this disagreement indicates that
non-Markovian effects are present in the data for the latter.

(ii) Alternatively, given any allowed choice of G,
choosing Q ~ [ and p to be any unit-trace density matrix
will maximize the value of the constant prefactor in Eq. (4),
reducing the number of experiments required to obtain a
desired precision (since Ey Qy is close to 1 for sufficiently
small m). Note that these data can be collected under the
same experimental configuration as case (i), where
Q = 10)(0| and G is a unitary 2-design, by simply rein-
corporating the outcomes associated with [ — Q that are
discarded in case (i). These data give independent infor-
mation because, by assumption, the probabilities of these
two outcomes are not constrained to add to 1 due to the
presence of loss.

Coherent leakage.—A distinct, but closely related error
to loss is (coherent) leakage, wherein the system is “leaked”
from the qubit subspace to other energy levels. Leakage
errors are non-Markovian errors on the qubit subspace
since the system can return to the qubit subspace. Coherent
leakage is a known consequence of control imperfections in
certain implementations of the coupling gate in ion traps
[20] and the controlled-phase gate in superconducting
qubits [21,22]. Figure 2 shows the results of our protocol
given a model of coherent leakage, in particular, an error
model for a random (fixed) unitary acting on a qutrit with a
random relative phase between the leakage level and the
qubit levels. The results initially appear to fit a single
exponential decay, but then quickly converge to a constant,
similar to the behavior observed in Ref. [23]. Consequently,
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FIG. 2 (color online). Semilog plot demonstrating the signature
of non-Markovian leakage under our protocol. Numerical results
obtained for a model of coherent leakage from a qubit subspace to
a third level under a small random unitary on the full qutrit space.
The data points are the estimates of E, Q) for m = 10, 20, ..., 300
obtained by sampling 30 random sequences of single-qubit Pauli
operators and the error bars are the standard errors of the mean.

if experimental data for our protocol does not neatly fit a
single exponential, one explanation would be that there is a
leakage level that has not been accounted for. A simple
protocol for estimating rates of coherent leakage was
provided previously in Ref. [24].

Conclusion—In this Letter, we have presented a
platform-independent and robust protocol for characteriz-
ing the average loss rate due to noisy implementations of
operations. Our protocol can also be used to estimate the
detector efficiency, provided the loss rate due to noisy
operations is sufficiently small. Since our protocol is easy
to implement, it is also a promising technique for
experimentally optimizing quantum control, as done,
e.g., in Ref. [25] using randomized benchmarking
experiments.

Experimentally implementing our protocol yields a
single exponential decay curve which can be fitted to
our analytical expression to obtain the average loss rate. If
the experimental data deviates significantly from a single
decay curve, the experimental noise is either strongly gate
dependent or non-Markovian. We have illustrated that the
decay can be observed and fitted in practice through
numerical simulations of loss for a specific error model
and also that non-Markovian leakage to an ancillary level
results in a deviation from a single exponential. However,
fully characterizing how the present protocol (and other
randomization-based protocols) behave in the presence of
non-Markovian noise remains an open problem.

Our protocol is scalable and robust against state-
preparation and measurement errors. However, particular
choices of preparations and measurements give extra
information. If the set of gates is chosen to be a unitary
2-design and the preparation and measurement are the same
as those used in standard randomized benchmarking,
then our current protocol can be applied to directly estimate
one of the parameters in randomized benchmarking and
thus provides a test to indicate non-Markovian noise.
Furthermore, with this choice of preparation and measure-
ment, the same data obtained via our protocol can be
used to estimate the unitarity presented in Ref. [12] and
thus to estimate how close the noise is to depolariz-
ing noise.

As with standard randomized benchmarking, obtaining
rigorous confidence intervals on the parameters obtained
from our protocol is still an open problem, though
techniques bounding the number of sequences to be
sampled [17] and using Bayesian methods to refine
prior information [26] should also be applicable to our
protocol.
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