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The dispersive interaction of atoms and a far-detuned light field allows nondestructive imaging of the
density oscillations in Bose-Einstein condensates. Starting from a ground state condensate, we investigate
how the measurement backaction leads to squeezing and entanglement of the quantized density
oscillations. We show that properly timed, stroboscopic imaging and feedback can be used to selectively
address specific eigenmodes and avoid excitation of nontargeted modes of the system.
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Squeezed and entangled states of light are important
ingredients in quantum metrology and communication
[1,2]. Production of analogous states of matter has been
a long quest in physics with implementations demonstrated
in atomic ensembles, as well as in superconducting and
nanomechanical devices. Relying on nonlinearities due to
atomic interactions, ultracold atoms have been prepared in
entangled states of split atomic clouds [3,4] and internal
state components [5–10], and in states that violate classical
inequalities [11–16].
Using dispersive light-matter interactions and measure-

ment backaction, room temperature vapor experiments
have demonstrated squeezed [17] and entangled [18] states,
quantum teleportation [19], and a quantum memory for
light [20]. Similar experiments with interacting cold atoms
and light fields have shown great progress [21–24], and
numerous proposals exist [25–27] to manipulate the
collective quantum states of ultracold atoms, while full
exploitation of the quantum nature of the interaction and
measurements is yet to be realized.
In this Letter we develop a theoretical treatment of

Bose-Einstein condensate (BEC) dynamics due to the
dispersive interaction with an optical probe field and
feedback [Fig. 1(a)]. We investigate the selective prepara-
tion of squeezed and entangled states of the multimodal
excitations of the BEC. The local atomic density is not
a quantum nondemolition (QND) variable, but by applying
stroboscopic measurements at selected times, we can
address effective QND variables of selected eigenmodes
of the BEC dynamics [28–30].
Atomic system.—We consider a 1D ultracold Bose gas

[31] harmonically confined with axial (radial) trapping
frequency ωxð⊥Þ and length scale lxð⊥Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mωxð⊥Þ

p
[Fig. 1(a)], where radially tight confinement restricts the
low-energy excitations to axial motion. The BEC ground
state wave function f0ðxÞ (taken to be real) is given by the
1D Gross-Pitaevskii equation

½H1D þ g1Dn0ðxÞ�f0ðxÞ ¼ μf0ðxÞ;

where the BEC meanfield density is n0ðxÞ ¼ Nf20ðxÞ, and
the chemical potential μ enforces the BEC population to the
total number of atomsN.H1D is the single atomHamiltonian
with thepotentialVðxÞ ¼ mω2

xx2=2. The interaction strength
is g1D ¼ 2ℏ2asc=ml2⊥ with the s-wave scattering length asc.
The elementary excitations of the BEC are the collective
center-of-mass, breathing, and higher order modes, where
each mode j constitutes a quantum harmonic oscillator
degree of freedom with the dimensionless quadrature
observables x̂jðtÞ and p̂jðtÞ with ½x̂jðtÞ; p̂kðtÞ� ¼ iδjk.
Their frequencies ωj and wave functions f�j ðxÞ are found
by solution of the Bogoliubov–de Gennes equations�

0 Lþ
L− 0

�� fþj ðxÞ
f−j ðxÞ

�
¼ ℏωj

� fþj ðxÞ
f−j ðxÞ

�
;

where L� ¼ H1D − μþ ð2� 1Þg1Dn0ðxÞ. These eigenmo-
des provide an expansion of the probed atomic density

n̂ðx; tÞ ¼ n0ðxÞ þ 2
X
j

ffiffiffiffiffiffiffiffiffiffiffi
n0ðxÞ

p
f−j ðxÞx̂jðtÞ þOðN0Þ; ð1Þ

embodying the dynamic quantum fluctuations about the
BEC meanfield. As we shall see, stroboscopically probing
the density enables mode selective squeezing [red line in
Fig. 1(b)] and entanglement [nonzero off-diagonal elements
in Fig. 1(c,ii)], and reinitialization of the modes to oscillator
ground states [end of the sequence in Fig. 1(b)].
Measurement.—The dispersive light-matter interaction

is characterized by the coupling constant κ ¼ −
ffiffiffiffiffiffiffi
d0η

p
with the atomic depumping rate η and optical depth d0
[32]. As we image the spatial density (1) by optical phase
shift measurements [Fig. 1(a)], the light field detection in a
pixel is sensitive to (a combination of) the atomic variables
x̂jðtÞ described by the atomic-pixel mode overlap integrals

f̄jd ¼
Z
d
dx

Z
dx0K1ðx − x0Þf0ðx0Þf−j ðx0Þ;

where
R
d dx denotes integration over the domain of the

dth pixel. The convolution with the measurement kernel,
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KαðxÞ ¼
R
dke−½ðαlRkÞ4=64π2�eikx=2π [33,34], accounts for

the resolution limit along the BEC axis associated with
diffraction of light propagating over distances ∼l⊥ through
the BEC. By smearing out spatial features smaller than
lR ¼ ðl⊥λÞ1=2, where λ is the light wavelength, it prevents
the addressing of modes with shorter spatial variations that
scale as ∼lx=j. For our analysis of correlations between
atomic modes, we will also need the overlap integrals

f̄2jk ¼
Z

dx
Z

dx0K ffiffi
24

p ðx − x0Þf0ðxÞf−j ðxÞf0ðx0Þf−k ðx0Þ:

Since the dominant contributions of the light-matter
interaction are second order in light and atomic quadratures
and the light field is subject to quadrature measurements,
the quantum state can be described by a Gaussian state [35].
The state is fully characterised by the first, ½R�j ¼ hν̂ji, and
second, ½A�jk ¼ covðν̂j; ν̂kÞ, moments of the atomic mode
variables, ν̂ ¼ ½x̂1ðtÞ; p̂1ðtÞ; x̂2ðtÞ; p̂2ðtÞ;…�T . Following
the methodologies of [36], the quantum backaction of
the light field measurements of the p̂ quadrature in each
pixel [represented by expectation values and random
Wiener increments, dWdðtÞ] results in the stochastic
evolution of the displacements (first moments) [37]

dR ¼ −DRdtþAMdW: ð2Þ
The harmonic rotation in all fx̂jðtÞ; p̂jðtÞg phase spaces is
represented by the block diagonal matrix D of blocks

½D�j ¼
�
0 −ωj

ωj 0

�
:

Each pixel probes a linear combination of modes repre-
sented by a rectangular matrix of blocks

½M�jd ¼ −

ffiffiffiffiffi
lL
lD

s �
0 2κf̄jd
0 0

�
;

and owing to the correlations among the modes (A),
the measurement results dW ¼ ½0; dW1ðtÞ; 0; dW2ðtÞ;…�T
affect the modes in a correlated manner.
The covariance matrix (second moments) evolve as [37]

_A ¼ E − DA −ADT −AMMTA; ð3Þ
where the square matrix of blocks

½E�jk ¼
�
0 0

0 κ2lLf̄2jk

�
:

A evolves independently of the measurement outcomes.
While this implies that we can deterministically assess the
squeezing and entanglement in the system, the randommea-
surement results determine the displacements, about which
the squeezing and entanglement occurs.We first consider the
solution of Eq. (3), focusing on the squeezing and entangle-
ment generation, and later return to the stochastic evolution
of the displacements described by Eq. (2).
Squeezing.—Continuous probing with strength κ

squeezes x̂jðtÞ at a rate νj ¼ κ2lLf̄2jj, while the conjugate
quadrature p̂jðtÞ is antisqueezed. Since x̂jðtÞ and p̂jðtÞ are
coupled by rotation at a rate ωj, the squeezing is restricted.
Thus, the maximal squeezing of x̂jðtÞ occurs within the first
quarter of a full phase-space rotation. In the long-time limit,
Eq. (3) yields a steady-state solution where the x̂jðtÞ vari-
ance, var½x̂jðtÞ�SS ≃ ½ð1þ 4ν̄2jÞ1=2 − 1�1=2=2 ffiffiffi

2
p

ν̄j ≤ 1=2, is
determined by the rotation and squeezing rates, ν̄j ¼ νj=ωj.
Alternatively squeezing the x̂0j quadrature of the time
dependent x̂jðtÞ ¼ x̂0j cosωjtþ p̂0

j sinωjt is possible by

FIG. 1 (color online). (a) A BEC imprints a phase shift on a planar coherent light field depending on the atomic density along the BEC
axis. The phase shifts are spatially detected by an encapsulating (lL > lx) array of homodyne detectors (pixels) of widths lD ¼ lx=10.
(b) The atomic modes can be selectively addressed and squeezed, illustrated here, where first the 3rd mode, and subsequently, modes 1
and 5 are squeezed. (c) The absolute value of the covariance matrix elements for the first three odd modes. Continuous probing
(i) squeezes and correlates a swathe of atomic modes, while stroboscopic probing (ii) can generate correlations between only selected
modes. The same level of entanglement of modes 1 and 3 is achieved in (i) and (ii), while the strong squeezing and the addressing of the
5th mode in (i) is absent in (ii). See text for the pulse sequences. The simulations are for theD2 line (σþ polarized) of 1000 87Rb atoms in
the jF; Fzi ¼ j2; 2i state with ωx ¼ 2π × 150 Hz, ω⊥ ¼ 100ωx, and μ ¼ 2ℏωx.
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applying a temporally modulated field [38] with a sequence
of constant intensity pulses determined by one or more
frequenciesϖi. The timings tl and durations τl of the pulses
are determined by ensuring, for each frequency, that ϖit is
within Δφ=2 from a multiple of 2π. Probing at the single
frequency ϖ ¼ 2ωj amounts to a train of n pulses centered
on times tl ¼ ½0; π=ωj; 2π=ωj;…; nπ=ωj� with identical
durations, τl ¼ τ ¼ Δφ=ϖ. Such a field squeezes the �x̂0j
quadrature, while avoiding its antisqueezing at intermediate
times. This enables squeezing well beyond the continuous
case for the same strength κ. For small Δφ, effective QND
probing of x̂0j is expected, var½x̂0j �QND ¼ 1=2ð1þ 2νjτTÞ
[39] with τT ¼ nτ, and is observed (red line) in Fig. 1(b)
where the first quarter of the trace squeezes the 3rd mode
(κ2 ¼ 100ωx=2π, ϖ ¼ 2ω3, and Δφ=2π ¼ 0.05).
The atomic multimodal system is far from the single-

mode squeezing picture. However, if no other mode
nor coupled correlation has a rational frequency ratio to
ωj, the pulse train only addresses the jth mode. This modal
selectivity is illustrated in Fig. 1(b), where the variances of
modes 1 and 5 are essentially unaffected during probing
of the 3rd mode. Here, the atomic interactions provide
an irregular spectrum of mode frequencies [31], allowing
separate addressing without crosstalk.
The simultaneous squeezing of two modes, j and k, is

achieved with the two frequencies,ϖ1¼2ωj andϖ2¼2ωk,
as featured in Fig. 1(b) for modes 1 and 5 after the time
ωxt ¼ 25π (Δφ=2π ¼ 0.1). The probing sequence is now
out of phase with the 3rd mode, and hence, its prior
squeezing is progressively lost, returning to initial vacuum
values. The final 5% of the sequence demonstrates reiniti-
alization of all modes to vacuum fluctuations by switching
to weak continuous probing (κ2 ¼ 50ωx=2π). The preser-
vation of vacuum fluctuations of the nontargeted modes,
the loss of squeezing of the 3rd mode, and the reinitializa-
tion of all modes to vacuum fluctuations, featured in
Fig. 1(b), are demonstrations of the interplay between
atomic dynamics, measurement strength, and stroboscopic
probing, enacting a quantum eraser.
To further assess the performance of the operations, we

study squeezing of the 3rd mode in Fig. 2 (similar results
are found for other modes and for the joint squeezing or
entangling of pairs of modes). The rate of squeezing is
determined by Δϕ, as the accumulated probing time τT ∝
Δϕ (inset). However, only for smaller Δϕ, the x quadrature
is probed in a QND fashion (red line), while the squeezing
for larger Δϕ is suboptimal as a result of the inadvertent
probing of the p component. The figure also addresses
crosstalk between the j ¼ 1; 3; 5 subsystem and its comple-
ment through the purity P of its reduced density matrix ρ̂.
The Hellinger distance DH ¼ Tr½ρ̂1=2 − ðρ̂dÞ1=2�2=2 [40]
quantifies the selectivity within the subsystem. The desired
state ρ̂d assumes identical R to ρ̂, but with all blocks ½A�jk,
except j ¼ k ¼ 3, replaced by their initial vacuum values.
Excellent selectivity (DH ≃ 0) and little crosstalk (P≃ 1)

are observed for small Δϕ. For comparison (dotted lines),
a noninteracting atomic system demonstrates similar
squeezing; however, the corresponding linear spectrum
ωj ¼ ωxj results in significant crosstalk and poor mode
selectivity.
Entanglement.—A probe transmitted through two atomic

media reveals information about their collective rather than
individual properties and may hence lead to their mutual
entanglement [39]. Similarly, we may entangle two modes,
j and k, of a single BEC by probing the density in a
manner that does not discriminate contributions from the
individual modes. The modes’ respective spatial signa-
tures, ∼f0ðxÞf−j ðxÞ and ∼f0ðxÞf−k ðxÞ, must be indistinct
(f̄2jk ≠ 0). Partial temporal distinguishability, owing to
different oscillation frequencies ωj and ωk, is avoided by
stroboscopically probing with a train of pulses at the single
frequency ϖ ¼ ωj þ ωk. Analogous to the case of squeez-
ing, it also allows selective addressing of modes as illus-
trated in Fig. 1(c). The absolute value of the covariance
matrix elements of the j ¼ 1; 3; 5 subsystem is shown for
(i) the steady state of continuous probing (κ2 ¼ 1000ωx=2π)
and (ii) stroboscopic probing for 100 trap periods
(κ2 ¼ 4ωx=2π and Δφ=2π ¼ 0.03). Although both cases
reach the same level of entanglement of modes 1 and 3, the
continuous probing requires a larger strength κ, addresses a
swathe of modes, and causes significant squeezing.
Bipartite entanglement can be quantified by the loga-

rithmic negativity Ejk ¼ log2∥ρ̂
Tp
B ∥Tr [35] of the bipartite

reduced density matrix ρ̂B, where Tp denotes the partial
transpose and ∥ · ∥Tr the trace norm. Figure 3(a) shows the
entanglement between modes 1 and 3, and the comparison
to an effective QND probing, for κ2τ → ∞ E13

QND →
log4½ð1þ βjk=1 − βjkÞ�. The spatial distinguishability of

FIG. 2 (color online). The squeezing of the 3rd mode after
stroboscopically probing (κ2 ¼ 100ωx=2π) for 100 trap periods is
shown, while the temporal evolution of the quadrature variance
var½x̂03� is illustrated in the inset. Dotted lines indicate the results
of the noninteracting atomic system for comparison. For small
Δϕ (pulse duration), var½x̂03� follows the QND result (red line, see
text), while for larger Δϕ, the squeezing is faster but suboptimal.
Excellent selectivity, Hellinger distance DH ≃ 0, and little cross-
talk, Purity P≃ 1, are observed for small Δϕ.
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the mode functions, Fig. 3(b), remains the limiting factor
and is paramterized by βjk ¼ jf̄2jkj=½f̄2jjf̄2kk�1=2. Deviations
from E13

QND and a small loss of purity, P ∼ 97%, are
attributed to coupling to other modes with commensurate
correlation frequencies [here, ω1 þ ω3 ≃ ðω1 þ ω7Þ=2].
The selectivity within the subsystem is excellent,
DH ≃ 0, where ρ̂d is identical to ρ̂, except initial vacuum
covariances of the 5th mode.
Feedback.—We have demonstrated that stroboscopic

probing permits squeezing and entanglement of particular
resonant modes. As illustrated in Fig. 4(a), the modes are
also subject to random displacements due to the diffusion
terms in Eq. (2). These coherent displacements of the mean
field correspond to a modification of the Gross-Pitaevskii
meanfield wave function. A micromirror array [41], a
spatial light modulator [42], or an acousto-optic deflector
[43] can provide adaptive lightshift potentials for the
atoms and serve as a feedback mechanism to recover
and maintain the original condensate wave function f0ðxÞ.
Mode matching with the single atom Hamiltonian Hf¼
ℏ
P

khkðxÞhp̂kðtÞi, where hkðxÞ ¼ 2ωjf
þ
j ðxÞδjk=

ffiffiffiffiffiffiffiffiffiffiffi
n0ðxÞ

p
,

we can selectively address the displacement of the jth
mode and

½D�j →
�
0 −ωj

ωj 2ωj

�

is changed in Eq. (2). The deterministic evolution of x̂jðtÞ
and p̂jðtÞ becomes critically damped, suppressing the
displacements caused by the dW terms in Eq. (2).
Simulating the full multimode dynamics, Fig. 4(b) dem-
onstrates that the displacement of the squeezed mode in
Fig. 2 is successfully suppressed.
The feedback demonstrated in Fig. 4 is only performed

for a single mode. In the effective QND examples of

single-mode squeezing (e.g., Δϕ ¼ 0.01 in Fig. 2) and
bipartite entanglement (Fig. 3), the coherent displacement
of the modes corresponds to an∼8% populationNnc outside
of the BEC mode. If necessary, more elaborate Hf can
be investigated to simultaneously minimize the excitation
of multiple modes, and Nnc may be reduced by different
trapping geometries, where the measurement kernel KαðxÞ
may yield less coherent excitation of the irrelevant modes.
Conclusions.—We have demonstrated the quantum con-

trol of a matter-wave system via spatially resolved optical
probing and feedback. Using stroboscopic probing, we
can address and correlate effective QND observables of
selected density modes of a BEC, while preserving the
initial vacuum fluctuations of nontargeted modes. Our
method of spatially resolved imaging may hold similar
prospects for squeezing and entanglement in other quantum
many-body systems with harmonic excitation modes,
such as, e.g., the center-of-mass Kohn mode [44], breathing
modes of the Tonks-Girardeau gas [45], full quantum 2D
systems [46], and the unitary 3D quantum gas [47]. In any
of these cases the performance relies on independent
excitation modes, and it is ultimately limited by the residual
atomic depumping [32]. For small 1D alkali condensates
we estimate that experimental parameters, currently avail-
able [48–50], permit significant squeezing and entangle-
ment of the selected modes.
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FIG. 3 (color online). (a) Modes 1 and 3 are entangled by a
pulse sequence of 100 trap periods with ϖ1 ¼ ω1 þ ω3,
Δφ=2π ¼ 0.03, and κ2 ¼ 30ωx=2π. The logarithmic negativity
E13 slightly outperforms the corresponding QND result E13

QND.
The selectivity within the j ¼ 1; 3; 5 subsystem is excellent
(DH ≃ 0) and the subsystem’s purity is P ∼ 97%. (b) The mode
functions (not to scale) of the condensate f0ðxÞ, entangled modes
f−1;3ðxÞ, and the overlap ∼f20ðxÞf−1 ðxÞf−3 ðxÞ.

FIG. 4 (color online). A stochastic trajectory of hx̂3ðtÞi and
hp̂3ðtÞi, and the standard deviations of 1000 trajectories σhx̂3iðtÞ
and σhp̂3iðtÞ, corresponding to Fig. 2 (Δϕ=2π ¼ 0.15). The gray
regions indicate when the measurement occurs. (a) Without
feedback, the trajectories diffuse and oscillate, and approximately
σhx̂3iðtÞ ¼ σhp̂3iðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν3τT=2

p
(red line). (b) With feedback, the

desired damping of displacements is demonstrated.
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