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We present a model to understand quantitatively the role of symmetry breaking in assembly of
macromolecular aggregates in general, and the protein shells of viruses in particular. A simple dodecahedral
lattice model with a quadrupolar order parameter allows us to demonstrate how symmetry breaking may
reduce the probability of assembly errors and, consequently, enhance assembly efficiency. We show that the
ground state is characterized by large-scale cooperative zero-energy modes. In analogy with other models,
this suggests a general physical principle: the tendency of biological molecules to generate symmetric
structures competes with the tendency to break symmetry in order to achieve specific functional goals.
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The protein shells, or capsids, that surround the genomes
of viruses are frequently strikingly regular and elegant [1].
The capsids of most spherical viruses have the symmetry of
one of the platonic solids: the icosahedron. In 1962 Caspar
and Klug (CK) proposed a geometrical principle for the
construction of icosahedral viral capsids [2]. It starts by
drawing, on a hexagonal lattice, equilateral triangles whose
vertices are located at the lattice sites, one of which is the
origin. The triangles can then be indexed by the pair of
integers h and k that determine the location of one of the
two other vertices in terms of the two basis vectors of the
hexagonal lattice. Icosahedra are then constructed by
assembling together twenty such triangles, replacing a
hexagon by a pentagon at each vertex. Different CK
icosahedra are classified by their T number given by
h2 þ k2 þ hk ¼ 1; 3; 4; 7; 9; 13;…. Figure 1 shows the
case of T ¼ 9 CK icosahedron with (h ¼ 3, k ¼ 0).
Actual capsids are formed by placing clusters of five
(identical) proteins, or pentons, on the pentagons of a
CK icosahedron and clusters of six proteins, or hexons, on
the hexamers, adding up to a total of 60T proteins. The
CK construction has remained a fundamental organizing
principle of structural virology.
Proteins placed on the sites of a CK shell encounter T

different local symmetries. Caspar and Klug argued that the
CK construction maximizes the symmetry of the shell and
hence minimizes the amount of intrinsic protein deforma-
tion generated by variations of the local environment.
Given the success of the CK construction, it was surprising
when detailed reconstructions of capsids by x-ray diffrac-
tion revealed numerous examples of capsids that had the
symmetry of a CK shell but with capsid proteins at
symmetry-inequivalent locations that had very different
conformations [4,5]. In addition, some capsids violated
the symmetry of the CK shell altogether [6]. These facts

prompt a critical question for biophysics: how do we
explain symmetry breaking in macromolecular assembly,
and what function does it play?
Of particular relevance to this question are viral capsids

that switch between locally symmetric and asymmetric
conformations. A well-studied case is the T ¼ 7 bacterio-
phage HK97 [7,8]. During initial assembly, HK97 hexons
have a shear deformation of about 20 percent [9] that breaks
local symmetry. When DNA is injected into the shell—as
part of the virus assembly process—a capsid protein
conformational change takes place as a result of which
the hexons adopt a symmetric hexagonal shape, and the
icosahedral capsid undergoes a buckling transition, with its
morphology changing from spherical to faceted [10,11].

FIG. 1 (color online). Construction of a CK T ¼ 9 icosahedron
from an (h ¼ 3, k ¼ 0) lattice vector creating an equilateral
triangle. The perpendicular height of the triangle is taken to be 1.
Blue: pentons. Gray: penton-bordering hexons. Red: face-
centered hexons. Bottom left: lattice triangle constructed from
an (h ¼ 3, k ¼ 0) lattice vector of a stretched hexagonal lattice
where the perpendicular height of the triangle is increased by a
factor λ. Second column: example of hexamer protein configu-
rations in the unstretched-mature (top) and stretched-immature
(bottom) capsid. These examples refer to the Head II and
Prohead II T ¼ 7 HK97 virus (ViperDB [3]).

PRL 115, 058101 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
31 JULY 2015

0031-9007=15=115(5)=058101(5) 058101-1 © 2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.115.058101
http://dx.doi.org/10.1103/PhysRevLett.115.058101
http://dx.doi.org/10.1103/PhysRevLett.115.058101
http://dx.doi.org/10.1103/PhysRevLett.115.058101


HK97 is not exceptional, but a member of a large class
of viruses that probably share a common ancestry [12]:
the eukaryote-infecting herpes viruses (Herpesviridae)
and the prokaryote-infecting tailed DNA bacteriophages
(Caudovirales). Their sizes range from T ¼ 4 to T ¼ 52.
As far as is known, the capsid proteins of viruses belonging
to this class share with HK97 the particular protein fold
motif that generates the symmetry breaking. For certain T
numbers, including T ¼ 7, it is possible to construct a
capsid from sheared hexons while retaining icosahedral
symmetry, but for other T numbers, such as T ¼ 9 and all T
numbers for which T is divisible by 3 (see Supplemental
Material I [13]), shearing is fundamentally incompatible
with icosahedral symmetry because there are twenty “face-
centered” hexons that have threefold symmetry axes
passing through their center (Fig. 1). In fact, in the limit
of large T numbers icosahedral symmetry must be broken
in the minimum energy configuration since proteins located
away from the fivefold sites must adopt the sheared
minimum energy configuration of the flat protein sheet.
In this Letter we show that the CK construction can be
generalized to include hexon symmetry breaking. This
generalized construction can be represented by a dodeca-
hedral lattice model with a quadrupolar order parameter on
each site. We will first discuss the general mathematical
properties of this model and then use thin-shell elasticity
theory to construct an explicit T ¼ 9 CK shell assembled
from sheared hexons to test it.
Assume that a CK icosahedral shell is assembled from a

flat sheet of isosceles shear-stretched triangles, of the form
shown in Fig. 1. Each triangle is constrained back into
an equilateral shape by a “prestress” before they are fitted
together to form an icosahedron. Every triangle can be in
one of three states, depending on the direction of stretch
with respect to the three pentagons that occupy the vertices
of the triangle. After the CK shell has been assembled
the constraints are released and the shell is allowed to relax
to equilibrium—for a given set of orientational choices.
The resulting state of the shell can be represented by a
dodecahedral lattice model whose vertices coincide with
the centers of the faces of the icosahedron. On each vertex,
a double-headed arrow along the original stretch direction
is placed, projecting along one of the three edges of the
dodecahedron that meet at the vertex [Fig. 2(a)]. This
construction generates 320 states in total. Since the double-
headed arrow represents a state of shear, it transforms under
an icosahedral symmetry operation as a two-by-two sym-
metric tensor, so it will be referred to as a “quadrupolar”
order parameter.
Each state α of the system can be codified by a set of 20

integers fnig, where ni ¼ 1; 2; 3 gives the shear direction
with i ¼ 1;…; 20 a site index running over the dodecahe-
dral lattice. Let Eα be the energy of the state α. It should be
invariant under any one of the 120 icosahedral symmetry
operations.

By analogy with the lattice models of magnetism, it may
or may not be possible to express the energy as a sum
Eα ¼

P
i;jϵðni; njÞ over pairwise interactions between

neighboring quadrupoles with ϵðni; njÞ a “bond” energy.
For now, assume that this is the case. There are then
3 × 3 ¼ 9 possible bond configurations for each pair of
neighboring quadrupoles but only the four shown in
Fig. 2(b) are not related by symmetry. Configurations 1
and 2 will be called “ferromagnetic” since their stretch
directions are aligned (after parallel transport) while 3 and 4
will be called “antiferromagnetic” as they are more nearly
perpendicular to each other. The corresponding bond
energies are denoted by ϵk¼1;2;3;4. The bond occupation
numbers Cα1 − Cα4 are defined as the number of two-site
configurations of each of the four bond species. The total
(pairwise) interaction energy then equals

Eα ¼ Cα1ϵ1 þ Cα2ϵ2 þ Cα3ϵ3 þ Cα4ϵ4: ð1Þ

Because for every configuration α the total number of
bonds

P
kCαk ¼ 30 is fixed, changes in the bond occupa-

tion numbers must obey the condition

ΔC1 þ ΔC2 þ ΔC3 þ ΔC4 ¼ 0: ð2Þ
In Supplemental Material II [13], we provide a proof that
there exists a second conservation law, which imposes

4ΔC1 − 2ΔC2 þ ΔC3 − 2ΔC4 ¼ 0: ð3Þ

These two conservation laws impose constraints on the
bond energies. If the bond energies are shifted by ϵi →
ϵi þ δi where δ1 ¼ δþ 4η, δ2 ¼ δ − 2η, δ3 ¼ δþ η, and
δ4 ¼ δ − 2η with δ and η arbitrary then the change in
energy ΔEα associated with any change in the bond
occupation numbers is not affected by the shifts. This
“gauge invariance” allows us to set the bond energies ϵ2
and ϵ3 equal to zero. From the two conservation laws, it

(b)(a)

FIG. 2 (color online). Symbolic representation of an icosahe-
dral CK shell constructed from stretched hexons. (a) The solid
lines show the stretch direction at the centers of the twenty faces
of the icosahedron, which span the dual dodecahedral lattice. The
solid lines project onto one of the three edges of the dodecahe-
dron that connect a site to its three neighbors. (b) Depiction of
the four distinct bond patterns for pairs of neighboring order
parameters.
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follows that a zero energy state should have ten type
2 bonds and twenty type 3 bonds. Whether zero energy
states also are minimum energy states depends on the signs
of ϵ1 and ϵ4.
In order to explore whether the pairwise decomposition

assumption is valid and, if so, what the bond energies and
minimum energy states are of the system, we numerically
constructed a model capsid. It is known that certain
physical properties of large capsids, such as the buckling
transition between spherical and polyhedral capsid mor-
phologies and the response to applied forces [14], are
reproduced by thin-shell elasticity theory where the shell
energy is written as the sum of a bending and a stretching
term

E ¼ 1

2

Z
dA

�
κð2HÞ2 þ KðJ − 1Þ2 þ μ

�
TrC

↔

J
− 2

��
: ð4Þ

Here, C
↔

is the right Cauchy-Green strain tensor. The first
term is the bending energy, with κ the bending modulus and
H the mean curvature. The second and third terms account
for area dilation and isochoric shear, where K is the 2D

(area) bulk modulus, J ¼ ðdetC↔Þ1=2 is the deformed-to-
reference area ratio, and μ is the 2D shear modulus.
Energies will be expressed in units of κ and lengths in
terms of the radius R of a spherical capsid. The two
dimensionless numbers KR2=κ and μR2=κ were set at 940
and 470, respectively. For these values, the Föppl–von
Kármán number (FvK) γ ¼ ðYR2=κÞ, with Y the 2D
Young’s modulus, is equal to 1250, which is above the
threshold for the buckling transition and similar to the value
obtained for HK97 in its mature buckled morphology [10].
Before assembling the shell, shear-stretched hexons were

constrained to adopt perfect sixfold symmetry so they could
be fitted onto a T ¼ 9 CK shell, after which the constraints
were released. The energy was minimized following the
method of Ref. [11] using both the steepest gradient and
Monte Carlo methods. As a function of the stretching factor
λ (see Fig. 1), a (reverse) buckling transition takes place
with increasing λ from an icosahedral (outward pointing
pentamers) to a dodecahedral (flat pentamers and outward
pointing hexamers) morphology near λ≃ 1.06, the point
where the shell is spherical and the elastic energy has a
minimum. A similar buckling transition from icosahedral to
spherical is obtained by decreasing the capsid FvK number.
However, changes in λ allow the additional spherical to
dodecahedral transition and we focus here on the effect of
different prestretch rather than its interplay with FvK
number as already studied in Ref. [15]. Finally, we
minimized the shell energy by allowing flips of the
orientational configurations of the hexons. In all cases
we found that in low energy states the stretch orientation
of the sixty penton-bordering hexons was fixed along the
hexon-penton interface while the orientations of the

remaining twenty face-centered hexons fluctuated exten-
sively. In order to obtain the excitation energies ϵj we
rotated single hexons by steps of 120 degrees while
maintaining all other states in the same orientation. As
shown in Fig. 3, the ϵj can be obtained by computing
changes in the deformation energy when a single hexon is
rotated. If the pairwise approximation is valid, then the
changes in energy should not depend on the background
orientation of hexons that are not connected to the “test”
hexon. Supplemental Material III [13] documents the
evidence that the pairwise approximation accounts for
the energy cost of order parameter flips with an error of
about 6%. In Fig. 4, computed nonzero bond energies are
plotted as a function of the stretch λ. Note the increase of ϵ4
around the buckling transition where the shell transforms
from icosahedral to dodecahedral.
Since ϵ1 and ϵ4 are always positive, the zero energy

states of the lattice model indeed are the minimum energy

FIG. 3 (color online). Configurations used to compute energy
tables: the orientation of the prestretch on the face-centered
hexamer in the middle is rotated over 120 deg to compute
the different types of interaction energies. The nonzero bond
energies follow from the relations E2 − E1 ¼ ϵ1 ¼ 0.043 and
E3 − E2 ¼ ϵ4 ¼ 0.030.

FIG. 4 (color online). Nonzero bond energies ϵ1 and ϵ4 in units
of the bending energy κ as a function of the stretch λ. The
corresponding capsid morphology is shown below the graph.
Notice that, since the order parameter distribution is not icosa-
hedral symmetric, it follows that the capsid morphologies are not
strictly icosahedral or dodecahedral symmetric.
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states. Using the lattice model, we determined the energy
spectrum for the bond energies ϵ1 ¼ 0.04 and ϵ4 ¼ 0.03
obtained for the buckling transition at λ ¼ 1.06. When we
randomly sampled 3 × 106 of the 320 configurations we
encountered only 16 zero energy configurations that were
not related by an icosahedral symmetry operation while
for 3 × 107 configurations, we encountered 155 such zero
energy configurations. Based on this, we estimate that
there are ∼2–3 × 102 nonequivalent degenerate zero energy
configurations. Figure 5 shows an example of six zero-
energy configurations. The six states shown in Fig. 5 are
part of a connected family of states that can be transformed
into one other by successive single rotations, each one
involving the relocation of one type 2 bond. Such a
connected family of zero-energy states will be called a
“zero mode.” Typically, for every zero-energy state, there
are multiple choices for zero-mode, single-spin rotations.
The largest zero mode we found has 167 members, but
there are also zero-energy states that are isolated in the
sense that they are not connected to any other zero-energy
state by a single rotation. Performing a systematic survey,

we have found zero modes with 1, 4, 9, 11, 14, 41, 121, and
167 members.
The spectrum of excited states for the 3 × 106 randomly

sampled states is shown in Fig. 6. When states are rank
ordered according to energy (right-hand side), it is seen that
the spectrum has a funnel-like structure, reminiscent of the
one encountered in the theory of protein folding [16]. The
level degeneracy (left-hand side) increases dramatically as
the funnel broadens out, resembling the molten-globule
state of protein folding. The heat capacity has a pronounced
maximum as a function of temperature when the thermal
energy is comparable to the plateau energies of the spectral
funnel (see Supplemental Material IV [13]).
We have shown that hexon symmetry breaking by shear

stretching in the CK construction leads to a statistical
mechanics model whose ground state is degenerate and
characterized by cooperative zero-energy modes. These
ground states lie at the bottom of a funnel of higher-energy
states that have a rapidly increasing level of degeneracy.
It is of interest to place the results in the context of the
literature on the symmetry of protein oligomers. Functional
protein oligomers formed from identical protein blocks
often are symmetric [17], most likely because symmetric
clusters allow for the formation of a maximum number of
stable bonds [18]—an argument similar to that of CK. The
tendency to generate symmetric protein structures with
optimal thermodynamic stability and assembly kinetics
competes with the tendency of biological molecules to
break symmetry in order to achieve specific functional
goals [17]. The breaking of icosahedral symmetry of the
hexons of large viral capsids by shearing may be a
functional feature of capsid assembly in this sense. Just
as chaperonins promote protein folding by preventing
unwanted interactions [16], hexon symmetry breaking
may reduce the probability of capsid assembly errors
by weakening bonding energies, hence allowing for more
reversible, error-correcting assembly steps. Conformational
changes following capsid assembly are then expected to
increase the binding strength as hexon symmetry is
restored, which is the case for HK97 [8,9].
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