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We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows
through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit
coupling present in the barrier region induces a spin-dependent momentum filtering in the directions
perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This
produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias
voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric
material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both
the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from
the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and
quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.
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The anomalous Hall effect (AHE) occurs in solids as the
result of the interplay between spin-orbit coupling (SOC)
and magnetism [1]. Although this fascinating phenomenon
has been investigated for more than a century, its complex-
ity and rich phenomenology continue to attract the attention
of many researchers. The topic has been extensively
discussed in various reviews [2–5].
Most of the investigations of the AHE have been focused

on the case of lateral transport in magnetic crystals and
films. However, recent theoretical investigations explored
the possible existence of anomalous Hall currents due to the
side-jump and skew-scattering of spin-polarized electrons
on impurities located in the insulating barrier of a ferro-
magnet-insulator-ferromagnet magnetic tunnel junction
(MTJ) [6]. In this Letter we propose an effect which does
not rely on scattering on impurities but on the interfacial
SOC resulting from the lack of inversion symmetry of the
MTJ. The effect can be used for experimentally proving
and quantifying the interfacial SOC in metallic and metal-
semiconductor systems. This is of particular relevance
because the interfacial SOC is crucial for various modern
phenomena in solids, e.g., anisotropies in optical [7] and
magnetotransport phenomena such as the tunneling aniso-
tropic magnetoresistance (TAMR) effect [8–15], as well
as for the formation of Majorana fermions in ferromag-
netic-atomic-chains–superconductor systems [16]. The
interfacial SOC has also been proposed for controlling
thermoelectric anisotropies in magnetic [17] and helimag-
netic [18] tunnel junctions and for generating SOC-induced
spin transfer torque in ferromagnet–normal-metal [19] and
in topological-insulator–ferromagnet structures [20].
We show theoretically that, when a current flows through

a MTJ with a single ferromagnetic electrode, finite anoma-
lous Hall conductances develop in the nonmagnetic

counterelectrode, even in the absence of impurities.
Since this effect originates from the skew tunneling [21]
of the spin polarized carriers through a potential barrier, we
refer to it as the tunneling anomalous Hall effect (TAHE).
Similarly, transverse spin currents in the nonmagnetic
region originate as a response to a bias applied across
the MTJ. Because of its analogy with the spin Hall effect
(SHE) [22,23], we refer to this phenomenon emerging in
the MTJ as the tunneling spin Hall effect (TSHE).
We consider a MTJ grown in the ẑ∥½001� direction and

composed of a ferromagnetic electrode separated by a
tunneling barrier from a nonmagnetic counterelectrode (see
Fig. 1). The tunneling barrier may refer to the presence of
an insulator or undoped semiconductor as a spacer between

FIG. 1 (color online). (a) Schematic of a ferromagnet-
semiconductor-normal metal tunnel junction. The tunneling
current flowing in the z direction generates the anomalous Hall
voltage (VH) in the nonmagnetic electrode. (b) Side view of (a).
Taking the [110] axis as a reference, the magnetization direction
(m) and the direction along which the Hall voltage is measured
(t) are determined by the angles φ and ϕ, respectively.
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the ferromagnetic and normal metal regions or just to a
Schotky barrier formed at the interface between a ferro-
magnet and an n-doped semiconductor. The model
Hamiltonian describing the heterojunction reads as [24],

H¼−
ℏ2

2
∇ 1

mðzÞ∇þVðzÞ−Δex

2
Θð−zÞm ·σþHso: ð1Þ

Here mðzÞ is the z-dependent effective mass of the carriers,
VðzÞ is the potential of the rectangular tunneling barrier,
Δex is the exchange energy in the ferromagnet, and ΘðzÞ is
the Heaviside step function, respectively. The components
of σ are the Pauli matrices and m ¼ ðcosφ; sinφ; 0Þ
indicates the magnetization direction.
The lack of inversion symmetry of the structure induces a

Bychkov-Rashba (BR) SOC [25]. If the material forming
the barrier exhibits bulk inversion asymmetry, an additional
contribution of Dresselhaus (D) type appears in the SOC
[26]. To capture these effects, we include in Eq. (1) the
effective SOC Hamiltonian, Hso ¼ HR þHD, where,

HR ¼ αðkyσx − kxσyÞδðzÞ; ð2Þ

is the interfacial BR SOC [27,28],

HD ¼ −ðkyσx þ kxσyÞ∂zγ∂z; ð3Þ

contains both the bulk-like and interfacial D SOCs [24,27],
and δðzÞ is the Dirac-delta function. The D parameter γ is
piecewise constant, being finite in the semiconducting
barrier and zero elsewhere.
The wave function of the system can be written as

Ψj
iσðrÞ ¼ eik∥·r∥Φj

iσðzÞ=
ffiffiffiffiffi
Az

p
; ð4Þ

where Az is the transverse area and Φj
iσðzÞ represent the

scattering states propagating along the z direction. The
subindex i ¼ l; c; r labels the region (left, center, or right)
and σ ¼ ↑;↓ refers to the spin of the incident particle. The
superindex (j ¼ l; r) indicates whether the particle comes
from the left (ferromagnetic electrode) and propagates to
the right (nonmagnetic electrode) or vice versa. The
scattering states, Φj

iσðzÞ, can be computed in a similar
way as in Refs. [24,27].
The charge current density flowing along the transverse

direction η (η ¼ x; y) in the nonmagnetic electrode is
determined by [29]

Jη ¼
X
σ

ðJl→r
ησ þ Jr→l

ησ Þ; ð5Þ

where Ji→j
ησ denotes the current contribution of the spin-σ

modes propagating from the ith to the jth electrode. Note
that since the interfacial SOC is only present in the barrier
region, the velocity operator in the nonmagnetic electrode
is simply given by vη ¼ pη=m ¼ −ðiℏ=mÞ∂η.

For low temperatures and small bias voltage, Vz, taking
the Fermi energy as the zero of the energy scale, the
conductance, Gηz ¼ Iη=Vz, reduces to [29],

Gηz ¼ −
AηG0

2ð2πÞ2
X
σ

Z
dk∥kη

�jtσσj2 þ jtσ;−σj2
kσ

�����
E¼0

;

ð6Þ

where Aη is the cross sectional area through which the
current Iη ¼ JηAη flows, G0 ¼ 2e2=h is the quantum of

conductance, kσ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2Fσ − k2∥

q
, and κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2F − k2∥

q
are,

respectively, the wave vector components in the ferromag-
netic and nonmagnetic electrodes at the Fermi energy, kFσ

denotes the Fermi wave vector corresponding to the spin σ
channel in the ferromagnet, and κF is the Fermi wave vector
of the nonmagnetic electrode. The coefficient tσ;σ (tσ;−σ)
depends on the interfacial SOC [29] and describes the
process of an incident spin-σ particle being transmitted
with conserved (flipped) spin orientation. The tunneling
(Gzz) and TAHE conductances (Gxz and Gyz) can be
computed by using Eq. (6).
The current and voltages in the nonmagnetic electrode

are related as Iη ¼ GημVμ. The lack of magnetism in this
region of the heterostructure implies that Gxy ¼ Gyx ¼ 0.
Furthermore, assuming a cubic material for the nonmag-
netic electrode yields Gxx ¼ Gyy ¼ G⊥. The resistances
Rημ can be found by inverting the conductance. Under open
circuit conditions in the x and y directions (i.e.,
Ix ¼ Iy ¼ 0) and taking into account that the diagonal
components of the conductance are much larger than the
off-diagonal ones, we obtain the following approximate
relations for the TAHE resistances and voltages [29]:

Rηz ≈Gηz=ðG⊥GzzÞ; Vη ≈ −GηzVz=G⊥; ð7Þ

with η ¼ x; y. In what follows we consider, for the sake of
simplicity, a sample with equal tunneling and Hall contact
areas (i.e., Ax ¼ Ay ¼ Az ¼ A).
For illustration we performed numerical calculations for

an Fe/GaAs/Au tunnel junction with the same system
parameters as in Refs. [9,24,27]. Two different values of
the BR parameter, α ¼ −0.6 eVÅ2 and α ¼ −17.4 eVÅ2

were considered. These values were extracted from the
experimental data of the TAMR measured in an Fe/GaAs/
Au tunnel junction at bias voltages of 50 mV and 90 mV,
respectively [9].
The results are shown in Fig. 2, where the TAHE

conductance ratios Gxz=Gzz and Gyz=Gzz along the
x∥½110� and y∥½1̄10� axes, respectively, are displayed as
functions of the magnetization direction. The tunneling
Hall conductance Gxz (Gyz) exhibits a sine-type (cosine-
type) dependence on the magnetization orientation indicat-
ing that the TAHE is of first order in the SOC strength. This
contrasts with the TAMR effect, which is of second order in
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SOC [24,30]. The small values of the TAMR (less than 1%)
measured in Fe/GaAs/Au MTJs [9] indicate that the
anisotropic contribution to the tunneling conductance
Gzz can be neglected. In fact the cosð2φÞ-type dependence
of Gzz is so small that it cannot be seen on the scale of
Fig. 2. The magnetization orientation dependence of the
TAHE conductances is a manifestation of the magneto-
anisotropic effects while the different amplitudes of Gxz
and Gyz reflect the crystalline magnetoanisotropy of the
system.
We can estimate the amplitudes of the TAHE resistances

by using Eq. (7). The conductance G⊥ describes the
response of the gold region to an applied transverse voltage
and is not related to tunneling. It can therefore be estimated
as G⊥ ¼ σAuA=L, where σAu ¼ 4.1 × 105Ω−1 cm−1 is the
conductivity of gold at room temperature. Assuming a
lateral size L ¼ 10 μm and taking into account that the
amplitudes of bothGxz=Gzz andGyz=Gzz are of the order of
10−3 (see Fig. 2) we obtain TAHE resistances of about
2.5 μΩ and TAHE voltages of 0.25 nV for a typical
tunneling current of the order of 100 μA.
In order to get more insight on the physical origin of the

TAHE, it is convenient to analyze the limit case of a very
thin barrier. In such a case the barrier potential together
with the SOC can be interpreted as an effective, spin and
momentum-dependent potential, i.e., Veff ¼ hδðzÞ, where
the height of the effective barrier is given by,

h ¼ V0dþ ðw · σÞ ¼ V0dþ ðα − βÞkyσx − ðαþ βÞkxσy;
ð8Þ

where β represents the effective parameter of the linearized
D SOC. One can see from Eq. (8) that the SOC affects the
tunneling by modifying the height (h) of the effective
barrier according to the in-plane momentum and spin
orientation of the incident particle. This, together with
the existence of spin polarization in the ferromagnetic lead,
creates an imbalance between transmitted particles with in-
plane momenta −k∥ and k∥ and results in finite TAHE
currents in the nonmagnetic counterelectrode. The spin-
dependent momentum filtering is schematically shown in
Fig. 3, where, for the sake of simplicity, we consider the
tunneling of particles with ky ¼ 0 through a barrier with
BR SOC only. This mechanism resembles the conventional
skew scattering of spin polarized carriers on impurities
[21]. However, unlike the conventional skew scattering, the
tunneling skew scattering does not depend on the transport
lifetime [31]. By situating the transverse Hall contacts
within a distance from the barrier smaller than the electron
mean free path (a few hundred nanometers for metals such
as Cu, Au, Al at low temperature [32]), the TAHE offers a
unique opportunity for the experimental investigation of the
intrinsic character of the tunneling skew scattering [33].
The strength of the Dirac-delta barrier can be charac-

terized by the parameter Q ¼ 2m0V0d=ℏ2. In the

high-barrier limit Q dominates over the Fermi momenta
(i.e., Q ≫ kFσ and Q ≫ κF) and over the SOC at the
Fermi wave vectors (i.e., Q ≫ 2m0jwðkFσÞj=ℏ2 and
Q ≫ 2m0jwðκFÞj=ℏ2). In such a limit the Hall conductan-
ces can be approximated by the following analytical
expressions:

Gηz ≈∓ 2G0

π

Aðk5F↑ − k5F↓Þ
15Q3

ðλα � λβÞ
�
sinφ

cosφ
; ð9Þ

with η ¼ x; y. In the equation above we have introduced
the dimensionless SOC parameters, λα ¼ 2m0α=ℏ2 and
λβ ¼ 2m0β=ℏ2.
From Eq. (9) one can conclude that, as in the conven-

tional AHE, the TAHE conductance vanishes in the absence
of spin polarization (i.e., when kF↑ ¼ kF↓). Furthermore,
these simplified analytical expressions properly describe
the magnetization orientation dependence of the numeri-
cally calculated TAHE conductances (see Fig. 2).
According to Eq. (9), the TAHE conductance along

the in-plane direction t ¼ ðcosϕ; sinϕ; 0Þ (see Fig. 1) is
given by,

Gtz ≈
2G0

π

Aðk5F↑ − k5F↓Þ
15Q3

½λα sinðϕ − φÞ − λβ sinðϕþ φÞ�:
ð10Þ

The BR SOC does not contain information about the
orientation of the in-plane crystallographic axes, since it is
invariant under rotations around the [001] axis.
Consequently, in the absence of the D SOC (i.e., when
λβ ¼ 0), the TAHE conductance exhibits a magnetoaniso-
tropic behavior, i.e., it depends on both the direction along
which it is measured and the magnetization direction but
only through their relative angle, ϕ − φ [see Eq. (10)].
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FIG. 2 (color online). Dependence of the TAHE conductance
ratios, Gxz=Gzz [(a), (c)] and Gyz=Gzz [(b), (d)], on the magneti-
zation direction for different values of the BR parameter (α) and
barrier thickness (d).
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Unlike the BR, the D SOC is not invariant under
rotations around the [001] axis. Therefore, when λβ ≠ 0,
the TAHE conductance acquires a crystalline magneto-
anisotropic character; i.e., it depends on both the magneti-
zation orientation and the crystallographic direction along
which it is measured. In contrast to the conventional
isotropic AHE conductance, the TAHE conductance mea-
sured along the magnetization direction (i.e., when ϕ ¼ φ)
remains, in general, finite. This is a peculiar signature of the
crystalline magnetoanisotropy induced by the D SOC.
By aligning the magnetization along the [010] direction

(i.e., φ ¼ π=4) and combining Eqs. (7) and (9) one obtains

λα
λβ

¼ Gxz −Gyz

Gxz þ Gyz
¼ Vx − Vy

Vx þ Vy
: ð11Þ

Thus, the measurement of the TAHE voltages Vx and Vy
could be used as a tool for the experimental determination

of the ratio α=β, which although previously measured in
quantum wells [34] and quantum wires [35] has not yet
been measured in tunneling systems.
Apart from the TAHE, the spin-dependent momentum

filtering also generates a transverse spin current in the
nonmagnetic electrode. The tunneling spin Hall current (in
units of ℏ=2e) corresponding to the spin component along
the magnetization direction (m) and propagating in the
nonmagnetic electrode along the η direction is given by

Jmη ¼
X
σ

σðJlησ þ JrησÞ: ð12Þ

The calculation of the tunneling spin Hall and TAHE
currents is quite similar and we omit further computational
details.
The tunneling spin Hall currents computed with the

square-barrier model exhibit the same angular dependences
as the AHE conductances (see Fig. 2) but with amplitudes
varying from few A=cm2 for an 8 nm thick barrier to
104 A=cm2 for d ¼ 4 nm. In the limit of a Dirac-delta
barrier, the following approximate expressions for the spin
Hall currents were found:

Jmη ≈∓ 2G0V
π

ðk5F↑ þ k5F↓Þ
15Q3

ðλα � λβÞ
�
sinφ

cosφ
; ð13Þ

where η ¼ x; y. From the equations above, one can see that
unlike the AHE conductances, the spin Hall currents
remain finite even in the absence of magnetization (i.e.,
when kF↑ ¼ kF↓).
Note that in our analysis we have not considered the

effect of the atomic SOC present in the nonmagnetic
electrode. While it should not play a significant role for
the TAHE (there is no magnetization in the nonmagnetic
electrode), it may produce additional contributions to the
TSHE due to conventional SHE. Thus, the use of a
nonmagnetic electrode with small SOC would be exper-
imentally preferred for the measurement of the TSHE.
Nevertheless, even if both the TSHE and SHE are present,
their contributions can be experimentally distinguished by
using their different scaling with system parameters or by
analyzing the anisotropy of the signal with respect to
different, transverse crystallographic directions.
In summary, we have theoretically shown that the

presence of interfacial SOC in tunnel junctions produces
an imbalanced spin-dependent momentum filtering in the
directions perpendicular to the tunneling current when one
of the electrodes is magnetic. As a result both anomalous
Hall voltages and spin Hall currents develop in the
other electrode even when within its region, magnetism,
impurities, and SOC are absent. This proposed phenome-
non should also be important to prove and quantify
the interfacial spin-orbit fields in metallic and metal-
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FIG. 3 (color online). Spin-dependent momentum filtering
resulting from tunneling through a barrier with BR SOC
characterized by the parameter α > 0. Particles propagate from
the ferromagnetic (left) electrode into the nonmagnetic (right)
region. For ky ¼ 0 and m∥y the height of the effective, spin-
dependent potential barrier is h ¼ V0d − σαkx [see Eq. (8)] with
σ ¼ 1 (σ ¼ −1) for an incident particle with spin parallel
(antiparallel) to the magnetization. Therefore, for the majority
channel (σ ¼ 1) the transmission of particles with kx > 0 is
favored, as schematically shown in (a). The momentum imbal-
ance in the transmitted states generates a transverse current. For
the minority channel (b) the situation is opposite. However, due to
the presence of spin polarization, the contribution of the majority
channel dominates. The result is a finite TAHE current in
the x direction, Jx < 0 (and a finite TAHE conductance,
Gxz ¼ JxAx=Vz). The situation for α < 0 is analogue but the
TAHE current flow is reversed, i.e., Jx > 0.
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semiconductor systems which are vital to many modern
phenomena in solids.
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