
Nonlinear Hysteretic Torsional Waves

J. Cabaret,1 P. Béquin,1 G. Theocharis,1 V. Andreev,2 V. E. Gusev,1 and V. Tournat1,*
1LUNAM Universités, CNRS, Université du Maine, LAUM UMR-CNRS 6613, Avenue Olivier Messiaen, 72085 Le Mans, France

2Acoustics Department, Faculty of Physics, Moscow State University, 119991 Moscow, Russia
(Received 12 January 2015; published 28 July 2015)

We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses
in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact
mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a
nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and
in a complex dynamic response depending on the history of the wave particle angular velocity. Both are
consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz
hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in
the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of
interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as
dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as
strong amplitude-dependent filters.
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Nonlinear dynamic hysteresis is involved in a wide range
of acoustic effects recently observed in complex solids,
often called mesoscopic solids, e.g., nonlinear softening
and nonlinear absorption [1]. It is shown to originate
from clapping and friction phenomena induced by acoustic
waves at the internal contacts and intergrain boundaries of
polycrystalline and earth materials [2–5], damaged solids
[6–8], and “model” granular media [9,10]. This hysteretic
nonlinearity enriches the phenomenology of the classical
nonlinearity (small expansion terms of the smooth non-
linear stress-strain relation and geometric nonlinearity)
with phenomena like nonlinear attenuation [2,3], memory
[11], and slow dynamics [12,13].
One of the first observed manifestations of mechanical

hysteresis is the shear coupling between two elastic spheres
in contact [14,15]. Interestingly, periodic line assemblies of
spheres, also called granular chains, have attracted growing
interest in the last years for their rich nonlinear dynamics
phenomena (harmonic generation, solitons, breathers, etc.)
[16–21] and the potentially wide applications in wave
control devices [22]. However, up to now, dynamic hyste-
resis has not been studied in granular chains. In addition, all
the media exhibiting dynamic hysteresis (rocks, disordered
granular media, concrete, composites, etc.) have been also
exhibiting, at the same time, other types of nonlinearities,
classical or nonclassical. Consequently, although some
modeling has been proposed [23,24], it has not been possible
yet to observe pulse wave distortion by purely hysteretic
nonlinearity. Manifestations of hysteretic nonlinearity were
observed only in narrow frequency band experiments with
sine waves, via, for instance, the shift of vibration reso-
nances [2,13] but never in the distortion of pulsed acoustic
signals. The transformation of pulse profiles in media with

classical quadratic nonlinearity leading to weak shock
front formation of the particle velocity profile is one of
the most classical observations in nonlinear acoustics
[25,26]. Interestingly, the pulse distortion in media with
cubic elastic nonlinearity was observed for the first time
only recently [27].
In this Letter, we report for the first time the trans-

formation of pulse profile in a medium with pure hysteretic
quadratic nonlinearity, essentially different from the
distortion by classical nonlinearities. We start with the
observation and characterization of torsional (or pure
rotational) wave propagation in a granular chain composed
of identical magnetic spheres. Because of the pure torsional
coupling at the contacts excited in a rotational motion
around the z axis of the chain, pure nonlinear hysteretic
behavior is observed. The latter is quantitatively charac-
terized for a single contact in a resonance experiment and
then used for the modeling of torsional wave pulse
distortion by quadratic hysteresis. A quantitative compari-
son with the experimental distorted pulse profiles in a chain
of 70 beads shows the validity of the developed modeling.
Extremely large nonlinear self-action (including self-
attenuation and pulse deceleration) is demonstrated for
parts of the pulse profile, depending on the previous
loading by the pulse itself (a short-term memory).
Experimental configuration.—The medium is composed

of 15 to 70 magnetic beads of diameter d ¼ 2R ¼ 19 mm
and mass m ¼ 27 g [see Fig. 1(a)] [28,29]. The magnetic
poles of the beads are aligned along the chain (z axis) and
provide a magnetic force F0 ¼ 54 N between beads,
normal to the contacts. F0 exceeds largely the gravity
force, and, thus, the contact forces along the chain are
considered identical in this study. The chain is excited at the
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top by a shaker (B&K 4810) coupled to the side of a
circular ball-bearing system, which produces a rotational
motion relative to the z axis of the chain [30]. This dynamic
rotation is transmitted along the chain thanks to the tor-
sional rigidity of the contacts, leading to torsional wave
propagation. For detecting the waves, accelerometers (type
PCB 352C23) are glued to the side of several beads, and
angular particle accelerations are recorded via an oscillo-
scope or a spectrum analyzer.
The dynamics of the chain can be described through

the following system of equations of rotational motion for
each bead n interacting with its nearest neighbors n − 1 and
nþ 1 through torsional moments,

J
∂2βn
∂t2 ¼ Mn −Mn−1; ð1Þ

where βn is the rotation angle of bead n, J ¼ 2mR2=5≃
9.85 × 10−7 kgm2 is the moment of inertia of the beads, t
the time, and Mn the nonlinear torsional moment depend-
ing on the relative rotation angle between beads nþ 1 and
n. Following the approach in Refs. [14,30,34], the moment-
angle relationship for oscillatory motion (a simple periodic
driving) between two spheres in contact can be approxi-
mated by linear and quadratic hysteretic functions (see the
Supplemental Material [30]),

Mn ¼ Mlin
n þMh

n

¼ Kt

�
ψn − h

�
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nψn þ
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2
ðψ2

n − ψ�2
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where ψn¼βnþ1−βn is the relative rotation angle between
two adjacent beads, ψ�

n is its magnitude, Kt ¼ dð1 − νÞF0

is the linear torsional constant, h ¼ Ea2=ð1þ νÞμF0 is
defined as the parameter of quadratic hysteretic nonlinear-
ity, with μ the a priori unknown friction coefficient of
the bead’s material, E ¼ 160 GPa the Young’s modulus,
ν≃ 0.24 the Poisson ratio of the bead’s material, and a ¼
½3F0Rð1 − ν2Þ=4E�1=3 ≃ 130 μm the contact radius.
In Fig. 1(b), the angular particle acceleration A15 of

bead n ¼ 15 is presented versus frequency in the case of a
15-bead chain. In this finite-length chain, resonances are
observed up to the cutoff frequency fc ≃ 275 Hz above
which the waves are evanescent. Simulating the linear
dynamics of the chain with springs having a complex
constant Kt ¼ 0.78ð1þ 0.027iÞ Nm to fit the experimen-
tal losses, we obtain the theoretical curve in Fig. 1(b). The
theoretical cutoff frequency fc ¼

ffiffiffiffiffiffiffiffiffiffi
Kt=J

p
=π ¼ 283 Hz is

found to be in good agreement with the experimental one.
From the experimental resonance frequencies fp (with
p ¼ 1;…; 15) of the finite chain, the dispersion relation
can be retrieved. At the p-order resonance of the chain, the
wave number is kp ¼ ð2p − 1Þπ=4L, where L is the length
of the chain. The relation fp − kp is also derived for the
simulation results, and the two dispersion curves are
compared successfully in Fig. 1(c). These observations
provide an estimate of the long-wavelength torsional wave
velocity in such system c ¼ d

ffiffiffiffiffiffiffiffiffiffi
Kt=J

p ≃ 17 m=s.
To verify in our configuration the validity of the

nonlinear moment-angle relationship (2) and to estimate
the parameter h, we characterize a single contact between
two spheres in a nonlinear resonance experiment as
depicted in Fig. 2(d). The downshift of the resonance
frequency with a linear dependence on the oscillation
amplitude can be attributed to hysteretic quadratic

FIG. 1 (color online). (a) Experimental configuration for the
torsional wave propagation (pure rotation of the beads around the
z axis of the chain). (b) Signal acceleration at bead 15 versus
frequency for a 15-bead chain. (c) Dispersion relation retrieved
from the p resonance frequencies of the chain.

FIG. 2 (color online). Magnitude of the acceleration transfer
function (detected acceleration A1 at bead 1 over the acceleration
A0 at bead 0) of a “two-beads–one-contact” system for different
excitation levels, experiment (a) and theory (b). (c) Relative
resonance frequency shift as a function of the detected resonance
amplitude (normalized to the one at the maximum excitation
level). (d) Setup for the single contact characterization in torsion.
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nonlinearity [2–5], while the shift proportional to the
square of the amplitude at the lowest excitation levels
can be attributed to either the cubic elastic nonlinearity
[35–37] or to the hysteretic nonlinearity described by the
Preisach-Arrhenius model [38].
In Fig. 2(a), the experimental ratio between acceleration

signals at bead 0 and bead 1 is shown as a function of
normalized frequency Ω ¼ f=f0, where f0 ¼ 159 Hz is
the experimental resonance frequency at the smallest
excitation amplitude. A downward resonance frequency
shift is observed as well as a nonlinear attenuation process
[2,3]. The relative resonance frequency shift Δf=f0 ¼
ðfr − f0Þ=f0 is shown to scale linearly with the detected
resonance amplitude in Fig. 2(c), which is consistent with
quadratic hysteresis. For comparison, the theoretical trans-
fer function obtained with the harmonic balance method
for the moment-angle relationship Eq. (2) and neglecting
contributions from higher harmonics [39,40] is plotted in
Fig. 2(b). A quantitative agreement between the theoretical
and experimental resonance curves and resonance fre-
quency shifts is obtained for h≃ 258� 16 (which corre-
sponds to a realistic friction coefficient μ≃ 0.32� 0.02).
The fitted quality factor Q0 ¼ 37 is also in agreement with
the imaginary part of Kt used above.
After having extracted the linear properties of the

medium and tested the quadratic hysteretic behavior for
a single contact, we turn to the nonlinear propagation of
torsional wave pulses. In order to avoid simultaneous
detection of forward and backward propagating waves
and to mimic a semi-infinite chain, we use a 70-bead-long
chain. The detector is placed at the bead n ¼ 18, and the
wave propagates through 104 beads before coming back to
the receiver after reflection by the free boundary. The pulse
central frequency should be sufficiently low to avoid strong
dispersion effects occurring at frequencies close to theBragg
frequency fc ≃ 275 Hz but also sufficiently high to limit its
spatial extent and be able to distinguish incident from
reflected pulses. Therefore, a central frequency of 100 Hz
has been chosen. The first bead velocity is shown in Fig. 3,
corresponding to the time-integrated accelerometer signal.
We describe the pulse distortion starting from the

following evolution equation valid for any type of signal
in a one-dimensional dispersionless medium where linear
dissipation is neglected [23,24,40,41],

∂θ̄v
∂ξ −

1

2

∂M̄h

∂θ̄v
∂θ̄v
∂τ ¼ 0: ð3Þ

Here, in accordance with the considered problem, θ̄v ¼
θv=θ0 is the normalized angular particle velocity, θ0 is the
angular velocity amplitude of the first phase of the emitted
wave packet at z¼0, τ ¼ ðt − z=cÞ=t0 where t0 ¼ 5.77 ms
is the duration of the first phase of the emitted signal,
M̄h ¼ Mh=ðdKtÞ, and ξ ¼ z=znl with znl ¼ c2t0=hdθ0 the
characteristic nonlinear length [42].

The important term ∂M̄h=∂θ̄v having the physical sense
of a normalized amplitude-dependent modulus [23,24,43]
and containing the hysteretic behavior has been analytically
derived from the Preisach-Mayergoyz (PM) model of
hysteresis [1,44,45]. This phenomenological model devel-
oped initially in magnetism and then adapted to elastic
waves considers a large number of hysteretic elements
(hysterons), each having two possible stress states. The
transitions from one state to another take place at two
characteristic strains, one for each sign of the strain rate. A
hysteretic medium can be represented via a distribution of
hysterons in the PM plane formed by two axes whose
coordinates are the two characteristic strains of the hys-
terons. Unlike existing analytical formulas for the quadratic
hysteresis, this model has the ability to model the instanta-
neous memory stored in the hysterons’ states under the
action of an arbitrary varying acoustic loading and, thus,
is applicable to arbitrary signals such as the pulses
observed here.
The evolution equation (3) is then modified into a system

of equations derived for the linear piecewise approximated
signal of Fig. 3. The derivation using the PM model of
hysteresis is detailed in the Supplemental Material [30] and
leads to the following system,

dTn ¼ Sndξ=2; ð4Þ

dτn ¼ ðTn − τnÞAndξ=ðTn − Tn−1Þ; ð5Þ

dSn ¼ −AnSndξ=ðTn − Tn−1Þ; ð6Þ

with An¼Sn if Sn>Sn−1 and An¼ðSnþSn−1Þ=2 if Sn<
Sn−1. The system (4)–(6) describes, respectively, the small
shifts of the positions in time of the zeros (dTn), the
extrema of the signal (dτn), as well as the change in
extremal values (dSn) when a small change in dξ occurs,
i.e., either a small distance or a small excitation amplitude

0 2 4 6 8
-2

-1

0

1

2
Experimental signal
Approximated signal

FIG. 3 (color online). Experimental angular particle velocity
θ̄v ¼ θv=θ0 at bead 1 for the smallest excitation amplitude and its
approximation by a linear piecewise function.Tn’s are the positions
of the signal zeros in time normalized by t0 ¼ 5.77 ms so that
T1 ¼ 1, τn’s are the extrema positions in time, and Sn’s are the
extrema amplitudes normalized by θ0 so that S1 ¼ 1.
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change. So, by increasing step by step the amplitude ξ, the
system (4)–(6) describes the distortion by the hysteretic
nonlinearity of the linear piecewise approximated pulse.
We note here that the evolution of the parameters of the
signal phase number n depends, in general, on phases n and
n − 1 but not on previous (n − 2; n − 3; …), i.e., a short-
memory effect. Equations (4) and (5) have a clear physical
sense. The local time delays (dTn; dτn) are proportional to
wave amplitudes (Sn; An) as it could be expected for
quadratic hysteretic nonlinearity [1]. Equation (6) describes
local nonlinear absorption with an absorption coefficient
proportional to the wave amplitude and to the local
“frequency” (inverse duration of the pulse phase
Tn − Tn−1), also theoretically expected for quadratic hys-
teretic nonlinearity [13].
In Fig. 4(a), we plot the experimental angular

velocity signals for different excitation amplitudes at
bead 1 (z ¼ 0 so by definition ξ ¼ 0) and at bead 18
(z ¼ 18d ¼ 0.323 m), i.e., for different values of ξ. For
the smallest excitation amplitude, the characteristic angu-
lar velocity is θ0 ≃ 0.17 rad=s and the experimentally
found speed of sound is c ¼ 20 m=s. As observed and

predicted for waves in resonance experiments [2–5,13],
both effects of nonlinear softening and nonlinear attenu-
ation are manifested here for the multiphase pulses. In
particular, in Figs. 4(a) and 4(b), one can clearly observe
that increasing ξ, the pulse extrema Sn arrive later
(nonlinear softening) and decrease in amplitude (nonlinear
attenuation). Additionally, in connection with the short-
memory effect, it is striking to observe that different parts
of the signal are not attenuated in the same way. For
instance, the third extremum is attenuated faster than the
first (jdS3j > jdS1j), although starting from ξ ¼ 0.5, S3 ≃
S1 [see Fig. 4(c)]. This effect is explained by Eq. (6)
where the evolution of signal extrema values dSn shows a
dependence on the inverse duration of the pulse phase Tn −
Tn−1 and from the fact that for the experimental signal under
consideration T3 − T2 < T1 [see Fig. 4(d)]. An important
role is also played by the memory effect, because while the
dynamics of the first phase duration T1 depends only on its
amplitude S1, Eq. (4), and T1 is continuously growing,
the variation of the third phase duration T3 − T2 depends on
the difference between its amplitude S3 and the amplitude
of the previous phase S2 (short-term memory effect), and
it diminishes because S3 < S2 [see Fig. 4(d)]. For
h¼800�160, all these observations, Figs. 4(c) and 4(d),
are quantitatively captured by the modeled signal distortion
from Eqs. (4)–(6). This value of the parameter of hysteretic
nonlinearity is different from the one evaluated above for the
one-contact–one-bead system resonance h≃ 258, although
of the same order of magnitude. This deviation could be
attributed to the differences in the setup (chain of two beads
versus 70 beads) through the role of the weight, to the
possibly different contact wears and their expected impor-
tant influence on h through the friction coefficient μ but also
to the possible slight misalignment of the magnetic beads
that could introduce forces and moments that are not
intrinsically represented in the model.
Conclusions.—Existence and propagation of pure tor-

sional waves in a granular magnetic chain were reported.
The torsional waves showed dispersive properties associ-
ated to the periodicity of the medium. Through a single
contact nonlinear resonance experiment, we verified a
nonlinear quadratic hysteretic relationship for the moment
angle (equivalent to stress strain). Following this observa-
tion, we developed a set of equations based on the PM
model of hysteresis to describe the torsional pulse propa-
gation. The model’s results compare very well with
experimental distorted pulses observed for increasing
excitation amplitude in a 70-bead-long chain. The reported
nonlinear transformation of pulse profile in a medium with
hysteretic quadratic nonlinearity essentially extends the
historically observed distortion by quadratic nonlinearity
[25] and the more recently observed distortion by cubic
nonlinearity [27].
In particular, we found a giant nonlinear attenuation (or

shift in time) for each phase of the pulse, which depends on

FIG. 4 (color online). (a) Experimental angular velocity signals
for different values of ξ: at bead 1 (ξ ¼ 0 dashed line) and at bead
18 for different excitation amplitudes (ξ ¼ 0.5, 1, 1.3, 1.8, and
2.4 for h ¼ 800). (b) Corresponding theoretical angular velocity
signals. (c) Experimental (symbols) and theoretical (lines) am-
plitudes of the four first signal extrema versus ξ. (d) Experimental
(symbols) and theoretical (lines) durations of the three first signal
phases versus ξ. Error bar limits represent simulated results for
h ¼ 640 and 960.
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the characteristics (amplitude, duration, etc.) of the par-
ticular phase of the signal and sometimes on the relative
amplitudes of the previous phases. This signifies a short-
term wave-memory effect. The observed giant nonlinear
attenuation effects and the short-term memory could
become key components of nonlinear elastic wave control
devices [18,46,47]. Moreover, the presented configuration
could be used as a model medium to study fundamental
nonlinear wave processes, e.g., frequency mixing, inter-
action of counterpropagating waves, and self-modulation
instability still unexplored for hysteretic nonlinearity.
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