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Experimental evidence has recently put the validity of the Porter-Thomas distribution (PTD) for partial
neutron widths into question. We identify two terms in the effective Hamiltonian that violate orthogonal
invariance (the basis for the PTD). Both are due to the coupling to the decay channels. We show that
realistic estimates for the coupling to the neutron channel and for nonstatistical γ decays yield significant
modifications of the PTD, similar to the observed ones.
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Introduction.—Recent experimental results on the dis-
tribution of neutron resonance widths have cast serious
doubt on the validity of random-matrix theory (RMT) in
nuclei. RMT predicts that the reduced neutron widths
follow a Porter-Thomas distribution (PTD) [1] (a χ2

distribution with a single degree of freedom, ν ¼ 1).
That prediction assumes nonoverlapping resonances with
a single open channel (the neutron channel). A maximum-
likelihood analysis of neutron widths in two Pt isotopes
using a χ2 distribution with ν degrees of freedom gave
ν ¼ 0.47 and ν ¼ 0.57, excluding the PTD with high
statistical significance [2]. For the Nuclear Data
Ensemble, the analysis resulted in ν values significantly
larger than unity [3,4]. Numerous theoretical attempts [5–9]
to account for the results of Refs. [2,3] have not definitively
resolved the issue. The validity of RMT is of central
importance for the statistical theory of nuclear reactions
[10] that is widely used in nuclear cross section
calculations.
In the present Letter we address two dynamical effects

that modify the PTD and that apparently have not been
taken into account so far in the theoretical literature or in
the analysis of neutron resonance data. The two effects are
the Thomas-Ehrman shift known from the study of light
nuclei [11], and nonstatistical effects in the γ decay of the
neutron resonances [12]. We show that both may cause
significant deviations of the distribution of neutron reso-
nance widths from the PTD.
The PTD follows from the orthogonal invariance of the

Gaussian orthogonal ensemble of random matrices (the
GOE). The GOE distribution function is proportional to

dO exp
�
−
N
λ2

X
ρ

E2
ρ

�YN
μ<ν

jEμ − Eνj
YN
σ

dEσ: ð1Þ

Here N with N → ∞ is the dimension of the GOE matrices.
The parameter λ defines the width 4λ of the GOE spectrum.
The mean level spacing at the center of the GOE spectrum

is d ¼ πλ=N. The Eμ are the GOE eigenvalues, and dO is
the Haar measure of the orthogonal group in N dimensions.
It encompasses the GOE eigenfunctions. Factorization of
the distribution implies that eigenvalues and eigenfunctions
are statistically independent. ForN → ∞, the projections of
the eigenfunctions onto an arbitrary vector in Hilbert space
possess a Gaussian distribution, and the reduced widths,
therefore, have a PTD. The reported disagreement of the
distribution of reduced neutron widths with the PTD
directly challenges the postulated orthogonal invariance
of the GOE. Conversely, dynamical effects that violate
orthogonal invariance will cause deviations from the PTD.
We show that both, the Thomas-Ehrman shift and non-
statistical γ decays, have that property and, thus, qualify as
causes of the observed disagreement.
Violation of orthogonal invariance.—We consider

s-wave neutron scattering on a spin zero target nucleus.
We take account of the single open neutron channel and of
the large number of γ decay channels. The effective
Hamiltonian is [10]

Heff
μν ¼ HGOE

μν þ FμνðEÞ − iπWμðEÞWνðEÞ
− iπ

X
γ

WðγÞ
μ WðγÞ

ν : ð2Þ

Here E is the neutron energy. We have replaced the actual
Hamiltonian by the GOE Hamiltonian HGOE as defined in
Eq. (1). The real matrix elements WμðEÞ with μ ¼
1; 2;…; N couple the s-wave neutron channel to the space
of N resonance states and carry the same energy depend-
ence E1=4 as do the neutron partial width amplitudes. The
shift matrix F accounts for that energy dependence. It is the
analog of the Thomas-Ehrman shift, with elements

FμνðEÞ ¼ P
Z

∞

0

dE0 WμðE0ÞWνðE0Þ
E − E0 ð3Þ

where P indicates the principal-value integral. At energies
far above the threshold, the matrix F is often neglected
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because then contributions to the integral from energies
E0 < E and E0 > E tend to cancel. Such cancellation
cannot occur at the neutron threshold E ¼ 0 and FμνðEÞ
may, thus, not be negligible. We neglect contributions
similar to F from closed channels and take FðEÞ as a
paradigmatic example. The matrix elements WðγÞ

μ play the
same role for the γ channels as do the Wμ for the neutron
channel except for a different energy dependence of the
WðγÞ

μ , resulting in a negligible contribution to the Thomas-
Ehrman shift.
None of the terms added to HGOE in Eq. (2) is invariant

under orthogonal transformations. Addressing the regime
of isolated resonances we confine our attention to the
matrix F and to the coupling to the γ decay channels. Thus,
the elements of the width matrixWμWν only serve to define
the neutron decay widths and are otherwise negligible.
Beyond that regime, the width matrix does cause deviations
from the PTD [6,7].
Let us first disregard γ decay channels and concentrate

on the role of F. WritingWμðEÞ ¼ WμE1=4 we observe that
the matrixWμWν has a single nonzero eigenvalue

P
μW

2
μ.

The associated eigenvector defines the superradiant state
[13,14] labeled μ ¼ 1. The transformation to the eigen-
vector basis leaves the ensemble of GOE matrices
unchanged and yields

Heff
μν ≈HGOE

μν þ δμ1δν1

�
F − iπ

X
ρ

W2
ρðEÞ

�
ð4Þ

where F ¼ P
μFμμ.

The transformation does not diagonalize the matrix F
exactly because the integral defining F receives contribu-
tions also from higher energies where the approximation
WμðEÞ ≈WμE1=4 does not apply. Near the neutron thresh-
old such contributions are relatively small, however, and
Eq. (4) should be a good approximation.
We compare F [Eq. (4)] with the diagonal elementHGOE

11 .
Sufficiently far above the neutron threshold (where the
s-wave penetration factor is ≈1) the matrix elements Wμ

obey [10]
P

μW
2
μ ¼ Ndx=π2 where x is related to the

average of the s-wave scattering function via S̄ ¼ ð1 − xÞ=
ð1þ xÞ and is, thus, of order unity. Hence,P

μW
2
μ ≈ dN=π2 ¼ λ=π. For N ≫ 1 that is much larger

than the root-mean-square value λ
ffiffiffiffiffiffiffiffiffi
2=N

p
of the diagonal

element HGOE
11 . For E → 0 the s-wave penetration factor

reduces
P

μW
2
μ. The reduction does not affect the principal-

value integral, however, which actually attains its maxi-
mum value at E ¼ 0. Thus, we expect F ≈ λ=π. The effect
of F can be amplified beyond our estimate by a single-
particle resonance near the neutron threshold. Such is the
case in the Pt isotopes for the 4s state of the shell model [5].
Next, we turn to the γ channels in Eq. (2). According to

the statistical model, the matrix elements WðγÞ
μ are

Gaussian-distributed random variables. The total γ widths
of the neutron resonances are, therefore, expected to have a

χ2 distribution with a large number of degrees of freedom,

and the partial widths ΓðγÞ
μ of the neutron resonances in a

given target nucleus are expected to have nearly the same
value. The effective Hamiltonian is, thus, expected to be
approximately given by Heff

μν ¼ HGOE
μν − iπWμWν−

δμνiΓ̄=2, with Γ̄ independent of μ. The term δμνiΓ̄=2 is
obviously orthogonally invariant. While the contribution of
each γ channel to Γ̄ is small, the number of such channels is
large resulting in a value of Γ̄ that dominates the total
neutron resonance widths near the neutron threshold.
A recent analysis [12] of the distribution of total γ decay

widths of neutron resonances in 96Mo contradicts the
expectation that these all have the same value. For s-wave
resonances and positive parity states, the distribution is
shown in the lower part of Fig. 6 of Ref. [12]. The
distribution is much wider than predicted by the GOE.
The result confirms earlier data [15] comprising a much
smaller number of resonances. It seems that at present, the
cause for the deviation is not understood. It is not clear
whether it is due to a specific property of 96Mo or whether it
is likely to occur in other nuclei as well. We opt for the
second possibility. We assume that the total γ decay widths
generically possess large fluctuations, in contradiction to
the statistical model. We explore the consequences of that
hypothesis for the distribution of neutron decay widths.
Typical values of total γ decay widths for s-wave neutron

resonances are of order 100 meV, both in medium-weight
[12] and in heavy [16] nuclei. The distributions for the total
γ decay widths shown in Ref. [12] start roughly at Γ0 ¼
100 meV and fall off with a half width σ of roughly
300 meV. To transcribe these figures into the effective
Hamiltonian of Eq. (2) we use that in medium-weight and
heavy nuclei typical average resonance spacings d ¼ πλ=N
are of order 10 eV. Then Γ0 ≈ πλ=ð100NÞ and
σ ≈ πλ=ð30NÞ. The orthogonal invariance of the coupling
to the γ decay channels is broken by the spread σ. We
compare σ with the Thomas-Ehrman shift function
F ≈ λ=π. We have ð1=NÞTrσ ≈ πλ=ð30NÞ while
ð1=NÞTrðFδμ1δν1Þ ¼ F=N ¼ λ=ðπNÞ. While somewhat
smaller, γ decay breaks orthogonal invariance roughly as
strongly as does the Thomas-Ehrman shift.
In summary we have identified two effects that break the

orthogonal invariance of the GOE, the Thomas-Ehrman
shift and the nonstatistical distribution of γ decay widths. In
the remainder of the Letter we investigate the consequences
of both effects for the distribution of neutron resonance
widths. We do so in the framework of a schematic model.
We write the effective Hamiltonian as

Heff ¼ HGOE
μν þ δμ1δν1Z: ð5Þ

We have suppressed the constant γ decay width Γ̄ because it
only causes a uniform shift of all eigenvalues [8] and does
not affect the eigenfunctions. The constant
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Z ¼ F − ði=2ÞδΓ − iπ
X
ρ

W2
ρ ð6Þ

violates orthogonal invariance and includes the Thomas-
Ehrman shift; the effect of nonstatistical γ decays where we
schematically represent the spread of γ decay widths by a
single term; and the term −iπ

P
ρW

2
ρ which is a reminder

that we use a basis where the state j1i is the super-
radiant state.
Average level density.—It is easy to see that for N → ∞

the presence of Z in the effective Hamiltonian has a
negligible influence on the average level density. The level
density is defined as ρðEÞ ¼ −ð1=πÞℑðEþ −HeffÞ−1. Here
ðEþ −HeffÞ−1 is the retarded Green function. This expres-
sion for ρ is physically meaningful only if Heff is
Hermitian, i.e., if Z is real. We first consider that case
and put Z ¼ F. The term F in Heff may be considered as
corresponding to a doorway state. Therefore, we treat the
first line and the first column of Heff differently from the
rest [14]. We define the orthogonal projection operators
P ¼ j1ih1j and Q ¼ 1 − P. With μ; ν ≥ 2 we write
PHeffP ¼ HGOE

11 þ Z ¼ E0, ðPHeffQÞ1μ ¼ HGOE
1μ ¼ Vμ,

ðQHeffQÞν1 ¼ HGOE
ν1 ¼ Vν, and ðQHeffQÞνμ. The elements

of the matrix QHeffQ are Gaussian-distributed random
variables. Moreover, the probability distribution ofQHeffQ
is invariant under orthogonal transformations in Q space.
Therefore, the matrices QHeffQ form a GOE of dimension
N − 1. We denote that ensemble by ~HGOE and, suppressing
the term

P
ρW

2
ρ, write the total Hamiltonian in matrix form,

Heff ¼
�E0 Vμ

Vν
~HGOE
νμ

�
: ð7Þ

The right-hand side of Eq. (7) is identical in form with the
standard model for a doorway state (see, for instance,
Ref. [17]). The spreading width of the doorway state is
Γ↓ ¼ 2πð1=NÞPμV

2
μ=d. In the present case we haveP

μV
2
μ ¼

P
μH

2
1μ. We note that for N ≫ 1 the sum is

self-averaging and given by λ2 for every member of the
ensemble (7). The resulting value of the spreading width
Γ↓ ¼ 2λ is comparable with the total width of the GOE
spectrum, and the doorway state is completely smeared
over that spectrum. While in the standard doorway-state
model [17], the magnitude of the coupling matrix elements
Vμ is of order d, here their root-mean square values d

ffiffiffiffi
N

p
are fixed by the underlying GOE and very large compared
to d. Therefore, the doorway state does not cause a local
enhancement of the level density. We note that the model of
Eq. (7) is physically meaningful only for jZj ≤ 2λ. For
jZj ≫ 2λ there exists a distinct state outside the GOE
spectrum that carries (almost) all the coupling to the
neutron channel. That case does not seem to model the
scattering of slow neutrons in a meaningful way.
As a corollary we mention that for imaginary Z and jZj ≈

2λwe deal with a superradiant state that causes a pole of the

Green function in the complex energy plane. The distance
of that pole from the real axis is comparable with the
width of the GOE spectrum. Therefore, the superradiant
state conveys only a small part of its large neutron width
to the remaining GOE eigenstates. It does not seem
meaningful to consider imaginary values of Z in excess
of 2λ.
Numerical results.—With ϕμ the normalized eigenfunc-

tions of the effective Hamiltonian [Eq. (5)] withP
ρW

2
ρ → 0, the partial neutron decay widths are propor-

tional to Njh1jϕμij2. The factor N is introduced so that the
average width equals unity. We have calculated the effect of
Z on the distribution of partial widths x ¼ Njh1jϕμij2
perturbatively, both for jZj ≪ d and for jZj ≫ λ. The
results show that Z does influence the PTD. Both limits
are unrealistic, however, and serve only as a check for the
numerical work. Therefore, we do not give our analytical
results here.
We first present results for real Z. We use the dimen-

sionless parameter κ ¼ Z=λ and consider values that are
physically realistic but lie outside the range of validity of
the perturbative approach. As Z increases the PTD PðxÞ ¼
½1=ð2 ffiffiffiffiffiffiffiffi

2πx
p Þ� expf−x=2g is deformed. The resulting prob-

ability distribution PðxÞ of the partial widths is shown in a
plot of ½PðxÞ=PðxÞ� − 1 versus x for several values of κ in
Fig. 1. The term Zj1ih1j in Heff leads to a segregation of
states. The states in one group become broader and those in
the other group become more narrow. Therefore, the
modified distribution has a longer tail and is more strongly
peaked at x ¼ 0 than the PTD, while in the middle around
x ¼ 1 the distribution is suppressed. In the limit of very
large κ one state becomes collective (i.e., carries almost all
the decay strength). The distribution of widths of the
remaining states returns to the PTD but with a much
reduced average width. That is consistent with our pertur-
bative results for large Z.
We have fitted these curves using the parametrization

PðxÞ ¼ ½1þ Að1 − xÞ þ Bðx2 − 6xþ 3Þ�PðxÞ ð8Þ
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FIG. 1 (color online). Relative difference ½PðxÞ=PðxÞ� − 1
as a function of x for several values of κ as indicated in the
figure and for N ¼ 1000. The dashed-dotted lines are fits
using expression (8).
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suggested by the perturbative result for small Z. The
distribution PðxÞ in Eq. (8) is normalized to unity for all
values of A and B. Terms linear (quadratic) in x embody a
change in average width (a quenching of the PTD,
respectively). For each of the curves representing the data
we also show a fit using Eq. (8) as a dashed-dotted line. In
the interval 0.1 ≤ κ ≤ 1 that is most relevant for applica-
tions, the deviations from the PTD are described perfectly
by Eq. (8).
The scaled fit coefficients A=κ2 and B=κ2 are shown as

functions of κ in Fig. 2 for different matrix dimensions N.
For κ < 0.4 we encounter numerical instabilities. However,
in that regime the changes of the PTD are too small to be of
practical interest. For κ > 0.4 the results for different
matrix dimension N exhibit consistently a linear depend-
ence on κ approximately given by

A=κ2 ¼ −0.035� 0.010þ ð0.16� 0.01Þκ;
B=κ2 ¼ 0.146� 0.002 − ð0.099� 0.003Þκ: ð9Þ

As a single quantitative measure of deviations from the
PTD we use the coefficient of the L variation (also known
as the Gini coefficient) defined as

τ ¼ 1

2x̄

Z
dx

Z
dx0jx − x0jPðxÞPðx0Þ: ð10Þ

The advantage of using τ over the traditional coefficient of
variation is that τ is nearly insensitive to the existence of a
small fraction of highly collective states that may com-
promise the average value of x [7]. The coefficient τ ranges

between zero and unity. For a χ2 distribution with ν ¼ 1
and ν ¼ 2 we have τ ¼ 2=π and τ ¼ 1=2, respectively; τ
decreases with increasing ν. A value of τ > 2=π ≈ 0.64
corresponds to a distribution that is more strongly peaked at
small x than the PTD and effectively has ν < 1. For a
distribution of the form, Eq. (9), we find
τ ¼ ð2=πÞð1 − 2A − A2 þ 2B − 2AB − 3B2Þ. The results
for purely imaginary Z are qualitatively similar to those
for real Z. Compared to the PTD, the distribution is
increased for small and large x and is depressed for
x ≈ 1. That is shown for Z=λ ¼ −0.8i by the black solid
line in Fig. 1. For imaginary Z we do not present a fit
because we have not succeeded in finding similarly good fit
formulas as in Eqs. (9) for real Z. Results for real and for
complex values of Z are shown in Fig. 2(c) where τ is
plotted as a function of κ. The case ImðZÞ ¼ 0 corresponds
to Eqs. (9). When ReðZÞ ¼ 0 we define κ ¼ jZj=λ. The
figure also includes curves where the Thomas-Ehrman shift
[Eq. (5)] is combined with the effect of multiple γ channels.
For the latter, in addition to the schematic model Eq. (6) for
the neutron channel, we have assumed that the γ decay
widths have a random distribution with mean value Γ̄ (in
units of the average neutron width) and a variance as
estimated above.
Conclusions.—The PTD follows from the orthogonal

invariance of the GOE. We have identified two causes for
violation of that invariance: the Thomas-Ehrman shift and
nonstatistical γ decays. Invariance breaking by the Thomas-
Ehrman shift is due to the coupling to the neutron channel.
Such coupling is immanent in the theory and does not
invalidate the GOE. In contradistinction, it may be argued
that the existence of nonstatistical γ decays represents a
genuine violation of GOE assumptions. It is conceivable
that such decays are due to transitions to low-lying states
where random-matrix theory does not apply.
We have shown that reasonable estimates of both

violations yield significant deviations of the distribution
of neutron decay widths from the PTD. The deviations
cover the range of ν values found in Refs. [2,3]. The
Thomas-Ehrman shift is strongest at the neutron threshold
and is expected to be particularly pronounced when the
s-wave strength function is maximal as is the case for the
Pt isotopes. For the nuclear data ensemble the effects of
nonstatistical γ decays have to be reevaluated.
In all cases studied, invariance breaking results in a

depletion of the probability distribution for the partial
widths x near x ¼ 1, compensated by an increase for small
and large values of x. To estimate the effect of such
breaking in an individual nucleus, the quantities F and
δΓ in Eq. (6) must be estimated. For F that should be
possible using the neutron strength function. For δΓ (a
measure of the spread of total γ decay widths) the
simultaneous analysis of the distribution of partial neutron
widths and of total γ decay widths for the measured neutron
resonances is required.

FIG. 2 (color online). Scaled fit coefficients: (a) B=κ2 and
(b) A=κ2 with A and B defined in Eq. (8) are plotted as functions
of κ for GOE ensembles of different dimensions N as indicated in
the figure. For N ¼ 1000 the error in the fit is shown by error
bars. The errors for the other curves are similar. The double-dot-
dashed black line shows the linear fits [Eq. (9)] of A=κ2 and B=κ2

as functions of κ. Right: (c) The coefficient τ defined in Eq. (10) is
plotted versus κ for different widths of multiple random γ
channels as explained in the text. The scale on the right shows
the corresponding ν values.
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