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We study a spherical gravitational collapse of a small mass in higher-derivative and ghost-free theories of
gravity. By boosting a solution of linearized equations for a static point mass in such theories we obtain in
the Penrose limit the gravitational field of an ultrarelativistic particle. Taking a superposition of such
solutions we construct a metric of a collapsing null shell in the linearized higher-derivative and ghost-free
gravity. The latter allows one to find the gravitational field of a thick null shell. By analyzing these solutions
we demonstrate that in a wide class of the higher dimensional theories of gravity as well as for the ghost-
free gravity there exists a mass gap for mini-black-hole production. We also found conditions when the
curvature invariants remain finite at r ¼ 0 for the collapse of the thick null shell.

DOI: 10.1103/PhysRevLett.115.051102 PACS numbers: 04.70.Bw, 04.20.Jb

It is generally believed that the theory of general relativity
(GR) should be modified to improve its ultraviolet (UV)
behavior and remove singularities. One of the options is to
allow terms in the gravitational action that containmore than
two derivations. The UV properties of the higher-derivative
theory of gravity are usually better than in GR. In particular,
fourth order gravity can be made renormalizable [1]. At the
same time, the gravitational potential of a point mass in the
Newtonian limit of such theories is usually finite (see,
e.g., Refs. [2,3] and references therein). However, higher-
derivative gravity possesses new unphysical degrees of
freedom (ghosts) [1,2]. The problem of ghosts can be solved
if one allows an infinite number of derivatives in the gravity
action, that makes it nonlocal. Ghost-free theories of gravity
are discussed in Refs. [4–7]. Their application to the
problem of singularities in cosmology and black holes
can be found in Ref. [8].
In this Letter we study gravitational collapse of a small

mass in higher-derivative (HD) and ghost-free (GF) theo-
ries of gravity. We obtain solutions of the linearized
equations for such theories for a spherical collapse of null
fluid. We demonstrate that if a static gravitational field of a
point mass in the HD and GF gravity is regular at r ¼ 0 [3],
then the metric for the collapsing object has the same
property. This means, that the perturbation of the metric,
which is proportional to the collapsing mass M, is smooth
and uniformly bounded, so that the higher inM corrections
can be neglected in the leading order. This implies that for
the collapse of a small mass an apparent horizon is not
formed. In other words, for this wide class of HD and GF
theories of gravity there exists a mass gap for mini-black-
hole production. This property is a consequence of the
existence of the UV length scale, where such theories
become different from GR. For the Weyl modified gravity,
this was shown a long time ago in Ref. [9].
We study the linearized gravity equations on the flat

Minkowski background ημν and write the metric in the form

gμν ¼ ημν þ hμν. The most general action for the higher-
derivative theory of gravity which contains not higher than
the second power of hμν is [5,6]

S ¼ −
Z

d4x

�
1

2
hμνað□Þ□hμν þ hσμbð□Þ∂σ∂νhμν

þ hcð□Þ∂μ∂νhμν þ
1

2
hdð□Þ□h

þ hλσ
fð□Þ
□

∂σ∂λ∂μ∂νhμν
�
; ð1Þ

where h ¼ ημνhμν. In general, five nonlinear functions of
the box operator obey the following three relations:

aþ b ¼ 0; cþ d ¼ 0; bþ cþ f ¼ 0: ð2Þ

Thus the action S contains in fact only two independent
arbitrary functions of the box operator. In order to recover
GR in the infrared domain these functions must satisfy the
following conditions: að0Þ ¼ cð0Þ ¼ −bð0Þ ¼ −dð0Þ ¼ 1.
Let us list Lagrangians L for some special interesting

examples [6]. (1) General relativity, L ¼ R: a ¼ c ¼ 1; (2)
LðRÞ gravity, LðRÞ¼Lð0ÞþL0ð0ÞRþ1=2L00ð0ÞR2þ…:
a ¼ 1, c ¼ 1 − L00ð□Þ; (3) Weyl gravity, L ¼ R−
μ−2CμναβCμναβ: a ¼ 1 − μ−2□, c ¼ 1 − 1

3
μ−2□; (4)

higher-derivative gravity: a ¼ Q
n
i¼1ð1 − μ−2i □Þ, c ¼Qnc

k¼1ð1 − ν−2k □Þ (for simplicity, in what follows, we
assume that masses μi are different); and (5) ghost-free
gravity: a ¼ c ¼ expð−□=μ2Þ. In the linearized approxi-
mation the Weyl and LðRÞ theories of gravity are nothing
but special cases of the general HD gravity.
Let us consider first static solutions of the linearized

gravity equations. In the Newtonian limit the stress-energy
tensor is τμν ¼ ρð~rÞδ0μδ0ν, and the metric is of the form

ds2 ¼ −ð1þ 2φÞdt2 þ ð1 − 2ψ þ 2φÞdl2: ð3Þ
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The functions φ and ψ obey the following equations:

að△Þ△ψ ¼ 8πGρ; ð4Þ

½að△Þ − 3cð△Þ�ð△φ − 2△ψÞ ¼ 8πGρ: ð5Þ

Here △ is a usual flat Laplace operator in a flat 3D space
with metric dl2, and G is the gravitational coupling
constant. After solving Eq. (4) and finding the potential
ψ , one can find the second potential φ by solving Eq. (5).
For a point mass ρ ¼ mδð~rÞ the solution is spherically

symmetric. We call it finite if φðrÞ and ψðrÞ near r ¼ 0
have the form

ψðrÞ ∼ ψ0 þ ψ1rþ
1

2
ψ2r2 þOðr3Þ; ð6Þ

φðrÞ ∼ φ0 þ φ1rþ
1

2
φ2r2 þOðr3Þ: ð7Þ

A finite solution is not necessary a regular one. Really, the
Kretschmann invariant R2 ¼ RαβγδRαβγδ for the metric,
Eqs. (3), (6), and (7), is the form

R2 ¼ A2

r2
þ A1

r
þOð1Þ;

A2 ¼ 8ð4ψ2
1 − 5ψ1φ1 þ 3φ2

1Þ;
A1 ¼ 16½ψ1ð5ψ2 − 4φ2Þ − 4φ1ðψ2 − φ2Þ�: ð8Þ

The quantity A2 is a positive definite quadratic form of
variables ψ1 and φ1, and it vanishes only when
ψ1 ¼ φ1 ¼ 0. In such a case the quantity A1 vanishes as
well, so that R2 is finite at r ¼ 0. We call such a solution
regular. We also call a solution ψ regular, if ψ1 ¼ 0. For a
special class of theories, where a ¼ c, one has ψ ¼ 2φ and
a solution which is ψ regular is at the same time a
regular one.
We denote Ô ¼ að△Þ△,

QðξÞ ¼ Ô−1ð△ ¼ −ξÞ ¼ −½ξað−ξÞ�−1 ð9Þ

and assume that QðξÞ can be written as the Laplace
transform of some function fðsÞ

QðξÞ ¼
Z

∞

0

dsfðsÞe−sξ; ð10Þ

fðsÞ ¼ 1

2πi

Z
αþi∞

α−i∞
dξQðξÞesξ: ð11Þ

The second relation is nothing but the inverse Laplace
transform. A parameter α must be chosen so that the
integration path in Eq. (11) lies in the domain of the
analyticity of QðξÞ.

A formal solution of the operator equation Ô Ĝ ¼ −Î
can be written by using the Laplace transform [Eq. (10)].
It contains the exponent expðs△Þ, which in the x repre-
sentation is nothing but the heat kernel

hx0jes△jxi ¼ Kðjx − x0j; sÞ ¼ e−jx−x0j2=ð4sÞ

ð4πsÞ3=2 : ð12Þ

Thus the potential ψðrÞ for a point mass is

ψðrÞ ¼ 8πGm
Z

∞

0

dsfðsÞKðr; sÞ ð13Þ

¼ Gm
πir

Z
αþi∞

α−i∞
dξQðξÞe−

ffiffiffiffi
−ξ

p
r: ð14Þ

We consider at first a case of HD gravity. We assume that
the function QðξÞ has simple poles and write it in the form

QðξÞ ¼ −
�
ξ
Yn
i¼1

ð1þ ξ=μ2i Þ
�
−1
: ð15Þ

This covers the gravitational theories (1)–(4) listed above,
except for some degenerate cases.
The Heaviside expansion theorem [10] gives the follow-

ing expression for fðsÞ:

fðsÞ ¼ −
�
1 −

Xn
i¼1

P−1
i e−μis

�
; ð16Þ

where Pi ¼
Q

n
j¼1;j≠ið1 − μ2j=μ

2
i Þ. Taking the integral in

Eq. (13), one obtains

ψðrÞ ¼ −2Gmr−1
�
1 −

Xn
i¼1

P−1
i e−μir

�
; ð17Þ

For GR fðsÞ ¼ 1 and one has

ψðrÞ ¼ 2φðrÞ ¼ −2Gm=r: ð18Þ

For a theory with higher derivatives, where n ≥ 1, the
potential ψðrÞ near r ¼ 0 has a form like Eq. (6) with

ψ0 ¼ −2GmS1; ψ1 ¼ GmS2; Sk ¼
Xn
i¼1

μki P
−1
i :

ð19Þ

We used here a relation S0 ¼ 1. Thus a theory with higher
derivatives is ψ regular, when the condition S2 ¼ 0 is
satisfied.
For the GF gravity fðsÞ ¼ −ϑðs − μ−2Þ and one repro-

duces the result of Ref. [5],
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ψðrÞ ¼ 2φðrÞ ¼ −2Gm erfðμr=2Þ=r: ð20Þ

This solution is regular at r ¼ 0.
We demonstrate now, how using a solution of Eq. (4) for

a static point mass one can obtain a solution for an
ultrarelativistic particle. Let us write the flat space metric
in the form dl2 ¼ dy2 þ dζ2⊥, and suppose that the source,
generating the gravitational field, moves along the y axis
with a constant velocity β. To find the gravitational field of
the moving source we make the following boost trans-
formation:

t ¼ λ−vþ λþu; y ¼ λ−v − λþu: ð21Þ

Here λ� ¼ ð1� βÞγ=2 and γ ¼ ð1 − β2Þ−1=2. In the limit
γ → ∞ one gets y ∼ −γu, t ∼ γu, l2 ∼ γ2u2 þ ζ2⊥, and

ds2 ¼ −dudvþ dζ2⊥ þ dh2;

dh2 ¼ Φdu2; Φ ¼ −2 lim
γ→∞

ðγ2ψÞ: ð22Þ

We assume that the energy of the particle, M ¼ γm,
remains constant in this (Penrose) limit. We use also the
following relation:

lim
γ→∞

γe−γ2u2

4s ¼
ffiffiffiffiffiffiffiffi
4πs

p
δðuÞ: ð23Þ

Using these relations and Eq. (13) one gets

Φ ¼ −4GMFðζ2⊥ÞδðuÞ; ð24Þ

FðzÞ ¼
Z

∞

0

ds
s
fðsÞe−z=ð4sÞ: ð25Þ

For GR, one has fðsÞ ¼ 1 and FðzÞ ¼ lnðz=η2Þ, where η is
an infrared cutoff parameter. The relations Eqs. (22) and
(24) correctly reproduce the well-known Aichelburg-Sexl
solution for the gravitational field of an ultrarelativistic
particle (“photon”) in GR.
Using Eq. (16) for fðsÞ for the HD gravity and taking

integral in Eq. (25) one finds

FðzÞ ¼ lnðz=η2Þ þ 2
Xn
i¼1

P−1
i K0ðμi

ffiffiffi
z

p Þ: ð26Þ

In the limit μi → ∞ the second term in the right-hand side
vanishes and one obtains the correct expression for GR. In
the presence of the higher derivatives the leading term of
the function FðzÞ at small z is

FðzÞ ∼ C −
1

4
S2zðln z − 2cÞ − 1

4
SzþOðz2Þ; ð27Þ

where c ¼ 1þ ln 2 − γ, γ ¼ 0.5772 is the Euler constant,
and S ¼ P

n
i¼1 μ

2
i lnðμ2i ÞP−1

i . For the ghost-free gravity one
has [11]

FðzÞ ¼ ln zþ γ þ Eið1; zÞ ∼ z −
1

4
z2 þOðz3Þ: ð28Þ

The obtained metric, Eqs. (22) and (25), can be used to
find a solution for the linearized HD and GF gravity
equations for a collapsing spherical thin null shell. For
this purpose one considers a set of “photons,” passing
through a fixed point P of the Minkowski spacetime. In the
continuous limit this set fills the surface of the null cone,
with the vertex at P. We additionally assume that the
density of this spherical distribution of the “photons” is
uniform and the corresponding mass per a unit solid angle
isM=4π. Since we are working in the linear approximation
the resulting gravitational field for such a distribution is
ds2 ¼ ds20 þ hdh2i, where hdh2i is obtained by averaging
of a single photon metric over their spherical distribution.
The calculations give [11]

ds2 ¼ −dt2 þ dr2 þ r2dω2 þ hdh2i; z ¼ r2 − t2;

hdh2i ¼ −2GMr−1FðzÞ½ðdt − tdr=rÞ2 þ zdω2=2�: ð29Þ

Let us denote

g ¼ ð∇ρÞ2; ρ2 ≡ gθθ ¼ r2 −
GM
r

zFðzÞ; ð30Þ

then the equation g ¼ 0 determines a position of the
apparent horizon, if the latter exists. In the linear in M
approximation this function is

g ¼ 1 − 2GMr−1qðzÞ; qðzÞ ¼ zF0ðzÞ; ð31Þ
where ð� � �Þ0 ¼ dð� � �Þ=dz. For GR (as well as for LðRÞ
gravity) qðzÞ ¼ 1.
Using Eq. (26) one finds that for the HD gravity

qðzÞ ¼ 1 −
ffiffiffi
z

p Xn
i¼1

μiP−1
i K1ðμi

ffiffiffi
z

p Þ: ð32Þ

For small z one has

qðzÞ ¼ −
1

4
S2zðln z − 2cþ 1Þ − 1

4
SzþOðz2Þ: ð33Þ

Let us demonstrate now that the function g is positive for
small enoughM, and, hence, the apparent horizon does not
exist. Let us notice that outside the null shell jtj=r < 1. We
denote t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β2

p
r, 0 ≤ β ≤ 1, then one has

(yi ¼ βμir)

qðzÞ=r ¼ β
Xn
i¼1

μiP−1
i ZðyiÞ; ZðyÞ ¼ 1

y
− K1ðyÞ:

ð34Þ
The function ZðyÞ is positive and takes maximal value
0.399 at y ¼ 1.114. Thus

PRL 115, 051102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
31 JULY 2015

051102-3



jqðzÞj=r < 0.4
Xn
i¼1

μijPij−1: ð35Þ

This implies that for small enough value of the massM the
invariant g is positive everywhere outside the shell. In other
words, for such mass M the collapse of the null shell does
not produce a mini-black-hole. This means that for the class
of the higher-derivative theory of gravity [Eq. (15)] with
n ≥ 1 there is a mass gap for the mini-black-hole produc-
tion. The value of this map is determined by the character-
istic length scale μ−1 of the theory. The apparent horizon
does not exist ifGMμ≲ 1. The same conclusion is valid for
the GF theory of gravity [11].
It is possible to calculate the curvature invariants for the

metric in Eq. (29). In particular, the Kretschmann curvature
invariant R2 in the lowest order in M is

R2 ¼ 48G2M2

r6
F ; F ¼ 2z2q02 − 2zqq0 þ q2: ð36Þ

Using Eq. (33) for small z one finds

F ∼
1

16
z2½ðw2þ4wþ5ÞS22þ2ðwþ2ÞSS2þS2�; ð37Þ

where w ¼ ln z − 2c. This means that Kretschmann curva-
ture vanishes on the null shells. However, in a general case
it is divergent at r ¼ 0.
In the model of a thin shell, an assumption is made that

the energy of the incoming pulse has a deltalike profile.
This assumption is not realistic for the theories under
consideration. If μ−1 is the characteristic time scale of the
HD and GF theories, one can expect that the minimal
duration of the energy flux cannot be smaller than μ−1. We
demonstrate now that for the collapse of the shell with a
finite thickness for the class of ψ-regular theories the
curvature is finite.
To obtain a solution of the HD and GF theories of gravity

equations for such a thick shell we proceed as follows [11].
Consider a set of spherical null shells collapsing to the same
spatial point r ¼ 0, but passing it at different moments of
time t. In the continuous limit, one obtains a distribution of
the matter, that describes a spherical thick null shell which
initially collapses and has a mass profile Mðtþ rÞ, and
after passing through the center it recollapses with the mass
profile Mðt − rÞ. In the linear in M approximation the
gravitational field of such a shell can be obtained by
averaging the metrics given by Eq. (29). We denote by
≪ dh̄2 ≫ the result of the averaging of the perturbation
hdh2i. For simplicity we present here the expression for
≪ dh̄2 ≫ for the case when _M is constant, and the time
duration of the thick shell is b, so that the total mass M of
the shell is _Mb. In the domain of the intersection of the
incoming and outgoing null fluid fluxes the metric is static.
The calculations give (see Ref. [11] for more details)

≪ dh̄2 ≫¼ −
2GM
br

�
c0dt2 þ c2

dr2

r2
þ 1

2
ðc0r2 − c2Þdω2

�
;

ð38Þ

where ck ¼
R
r
−r dxx

kFðr2 − x2Þ. It is easy to check that
constantC, which enters Eq. (27), does not contribute to the
curvature. For this reason we put C ¼ 0. Using the
expansion of FðzÞ in Eq. (27), one obtains

c0 ¼ −
r3

9
½ð6u − 5ÞS2 þ 3S�;

c2 ¼ −
r5

225
½ð30u − 31ÞS2 þ 15S�; ð39Þ

where u ¼ ln r − c − ln 2. For small M the function g
remains positive, while the Kretschmann invariant is

R2 ∼
32

27
G2 _M2½ð36u2 þ 5ÞS22 þ 36uS2Sþ 9S2�: ð40Þ

Hence, a collapse of a thick null shell in the theory with
higher derivatives results in the logarithmic singularity of
the curvature. However, if such a theory is ψ regular, the
curvature is finite. In particular, this property is valid
for any regular theory with higher derivatives. For the
ghost-free theory of gravity the Kretschmann invariant
R2 ∼ 32

3
G2 _M2μ4 is always finite at r ¼ 0 [11]. Let us

denote by λ ¼ μ−1 the fundamental length scale of the
theory. If the time duration of the pulse T obeys the
condition T ≥ μ−1, then one can rewrite the obtained
restriction on the value of the curvature in the form
jRj≲ ðGMμÞRcr, whereRcr ¼ λ−2 is the critical curvature
of the theory. Similar estimation with ln μ corrections is
valid for a regular HD gravity. This result means that for
this class of theories the curvature remains uniformly
limited, and for M ≪ μ−1 it is much smaller than the
critical curvature value. One can expect that in such a
situation, the higher in curvature corrections, which are
present in the full (not linearized) theory, can be neglected.
This means that the above conclusions, concerning the
absence of the apparent horizon for the collapse of small
mass and regularity of the solutions, will remain valid in the
full theory.
For the collapse of objects with large mass one can

expect that the apparent horizon exists at least in the
domain where the curvature is small and the Einstein
gravity is valid. An interesting open question is under
which conditions on the modified gravity theory a black
hole does not contain singularities in its interior.
Let us summarize. We studied solutions of the linearized

equations of the higher-derivative and ghost-free theories of
gravity. At first we discussed the gravitational field of a
point mass and obtained conditions when such a field is
regular. Next, we derived the gravitational field of an
ultrarelativistic particle for these theories, which generalizes
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the Aichelburg-Sexl solution of general relativity. And
finally, we found a solution for the field of a relativistic
collapsing object. The main result of the Letter is the
demonstration that, for regular higher-derivative theories
and for the ghost-free gravity, the gravitational field of the
collapsing object of small mass remains regular, its curva-
ture is finite, and the apparent horizon does not form.
Besides addressing the singularity problem, the results
presented in the Letter might be useful in general for
studying a nonlocal gravity in the time-dependent domain.
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