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We present an approach to the calculation of arbitrary spectral, thermal, and excited state properties within
the full configuration interaction quzantum Monte Carlo framework. This is achieved via an unbiased
projection of the Hamiltonian eigenvalue problem into a space of stochastically sampled Krylov vectors, thus,
enabling the calculation of real-frequency spectral and thermal properties and avoiding explicit analytic
continuation. We use this approach to calculate temperature-dependent properties and one- and two-body
spectral functions for various Hubbard models, as well as isolated excited states in ab initio systems.
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The quantum Monte Carlo (QMC) method in its various
guises, is undoubtedly one of the most important approaches
for accurate elucidation of properties for correlated systems
[1–5]. However, these successes have focused primarily on
the ground state energy and observables which commute
with the Hamiltonian. Critical importance for a deeper
understanding of correlated systems comes from dynamic
correlation functions and spectral quantities. These mirror
how we perceive our environment, namely, by perturbing a
system and measuring its response—the basis of nearly all
spectroscopic and experimental approaches. This gives us
direct insight into optical, magnetic, and other beyond-
ground-state properties, and allows for direct comparison to
experimental results.
Direct access to dynamic properties is a persistent

difficulty for QMC approaches in general. While, in the
absence of a sign problem, unbiased imaginary-time spectra
can be obtained [6–8], the analytic continuation to physical,
real-frequency functions is notoriously ill conditioned and
can lead to artifacts and smoothing of features [9]. For more
general Fermionic systems, higher temperatures must be
simulated to alleviate the sign problem [10], while nodal
constraints bias towards a particular solution and are difficult
to extend to spectra [1,7,11]. Alternatively, projections into
effective Hamiltonians have been able to obtain a few low-
energy states, but again, these are isolated states rather than
practical approaches for thermal or spectral quantities
[12,13], while a modification of the propagator can lead
to debilitating time step issues [14].
Here, we present a new QMC approach for computing

dynamic correlation functions, temperature-dependent
quantities, and isolated excited states for correlated quan-
tum systems, even in the presence of a sign problem. These
correlation functions are unbiased in the limit of large
averaging and exact in the limit of a large walker number.
This is achieved by extending the recently developed full
configuration interaction quantumMonte Carlo (FCIQMC)

method [2,15,16], by combining it with ideas from the
dynamical and finite-temperature Lanczos methods
(FTLM) [17–19]. The key advantage of the approach is
that it avoids any explicit storage over the full Hilbert space,
instead, only storing occupied states in the discretized wave
function at each snapshot. This allows for sparsity in the
wave function to be exploited to minimize memory bottle-
necks, which are a primary limitation in conventional
approaches which require explicit storage over the space
[17,18,20,21]. The result is a QMC method which,
although weakly exponentially scaling, in common with
the ground state FCIQMC approach, can allow for systems
to be treated well outside that possible by conventional
means, and which retains many of the important features of
the parent method [15,22,23]. These include a cancellation
algorithm to ameliorate the sign problem, an absence of
time-step error, and large-scale parallelism.
An arbitrary dynamic correlation function is defined as

GðωÞ ¼ hΨ0jÂ† 1

ω − ðĤ − E0Þ þ iη
V̂jΨ0i; ð1Þ

where Ĥ represents the Hamiltonian of the system,
fjΨ0i;E0g is the ground state wave function and energy,
η is a small broadening parameter, and V̂ and Â are arbitrary
operators which define the perturbation and observed
quantity in the correlation function. In the case of these
operators being single annihilation and creation operators,
one obtains the single-particle Green function, defining the
system band structure and density of states.
The aim of our method is to stochastically obtain a

projection of the Hamiltonian from the complete Hilbert
space to an effective, reduced dimensionality space, such
that it spans the degrees of freedom required to accurately
describe the desired spectral or thermal quantity. In this
Letter, we use a set of stochastically sampled wave
functions from a FCIQMC calculation to define this
transformation. If the initial state of the calculation is a
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stochastic representation of the wave function V̂jΨ0i, then
propagation from this state [24] to the ground state will, in
principle, span all states required to represent the expres-
sion in Eq. (1), equivalent to the space of ground state and
all imaginary-time response vectors. Once the Hamiltonian
is projected into this space, it can be exactly diagonalized,
and the desired correlation function of Eq. (1) directly
constructed in this eigenbasis—the Lehmann representa-
tion. For thermal quantities, the approach is analogous
with the initial vector taken from the infinite-temperature
distribution. Similar themes have been explored within
continuous real-space QMC approaches, but applied to
accelerate convergence for ground state properties [25].
Method.—A FCIQMC iteration consists of stochastically

applying a projection operator, P, to a walker distribution,
denoted at iteration i by qi, such that exact projection is
achieved on average, whose distributions we denote as
ψ i [24]. The aim is to stochastically sample the Krylov
subspace fψ0;Pψ0;…;Pn−1ψ0g. In projector QMC
approaches, one samples from the large n limit of this
subspace, which converges to the ground state. However, to
obtain finite-temperature and dynamic quantities, the aim is
now to stochastically project the Hamiltonian into the
whole sampled Krylov subspace, which represents an
efficient span of all states of interest, provided that q0 is
chosen appropriately.
By averaging the FCIQMC walker amplitudes, the

results of an exact propagation are rigorously approached
for expectation values which depend linearly on the wave
function [15,16]. In this work, quadratic quantities are
required, but now, E½q†i qj� ≠ ψ†

iψ j, due to correlations
between walker amplitudes, where E½qi� denotes the
expectation value. To compute these, two independent
replica sets of walkers are propagated simultaneously
(indexed via superscripts), such that the amplitudes are
uncorrelated between them [26,27], allowing for unbiased
estimates of ψ†

iψ j as E½q1†i q2j � or E½q2†i q1j �. This approach
for static correlation functions has been found to scale
without difficulty within the FCIQMC approach [28] (see
Supplemental Material for further details on scaling in the
replica approach [29]).
At selected iterations in an FCIQMC calculation, the

walker distribution is stored [30], and the overlap (S) and
Hamiltonian (T) matrices between these subspace vectors
are calculated as

Sij ¼ ðq1†i q2j þ q2†i q1jÞ=2; ð2Þ

Tij ¼ ðq1†i Hq2j þ q2†i Hq1jÞ=2: ð3Þ
While the overlap matrix estimate is trivial, calculating the
T matrix exactly is expensive, and so, instead, it is
stochastically sampled in the same manner as spawning
steps in the FCIQMC method [28]. Thus, a simulation
provides an estimate of the overlap matrix and the projected
Hamiltonian in the basis of Krylov vectors chosen, and so,
we denote the method the Krylov projected (KP)-FCIQMC

method. Averaging these quantities over independent
simulations can reduce errors in an unbiased manner,
resulting in a generalized eigenvalue problem for the
projected Hamiltonian. This can be solved by standard
techniques (see Supplemental Material [29,31,32]). Many
of the eigenvalues of S will be very small (or even negative
within stochastic errors), since the sampled space becomes
increasingly linearly dependent with continued propaga-
tion. Therefore, we discard these vectors of S without a
substantial loss of information. We refer to the eigenvectors
which are kept as Löwdin vectors. We note that although
the estimates of T and S are unbiased, the final eigenvalues
will not be because eigenvalues are nonlinear functions of
these matrices. However, this bias can be systematically
reduced with further averaging of T and S. (see
Supplemental Material for more details on the non-linear
effects on the eigenvalues [29]).
For exact propagation with P̂ ¼ Ĥ, our approach will

yield results identical to the Lanczos method. However,
because the method exploits sparsity via a stochastic
representation of the wave functions, large calculations
can often use significantly less memory than an equivalent
Lanczos calculation, as has been the case for the ground-
state FCIQMC method. Although our approach is, in
theory, systematically improvable to exactness for the
entire frequency range, in practice, this becomes increas-
ingly difficult for higher energy excitations. This is because
high-energy excitations have a small component in the
Krylov vectors, which decreases exponentially with imagi-
nary time. This renders them particularly difficult to sample
and susceptible to stochastic error in the sampled matrices.
Despite this limitation, the approach can, nevertheless, be
expected to obtain near-exact spectra for low-energy
excitations in systems out of reach of traditional dynamical
Lanczos approaches.
Finite temperature.—We assess the method with the

half-filled Hubbard model (defined in the Supplemental
Material [29]) [16,22]. Within the FTLM, thermal expect-
ation values are computed via

Trðe−βĤÂÞ ¼
XN

n¼1

XM−1

i¼0

e−βE
n
i hnjψn

i ihψn
i jÂjni þOðβMÞ;

ð4Þ
where jni labels a state in the N-dimensional Hilbert space,
and i labels the M states of an eigensystem fjψn

i i;En
i g

resulting from a Lanczos subspace with initial state jni.
Thus, by performing N Lanczos calculations consisting of
M − 1 applications of Ĥ each, one can obtain thermal
quantities which are correct to order βM−1. N can be very
large for systems of interest, and so, in practice, one starts
from a much smaller number of states, R ≪ N, chosen
as a random linear combination of all basis states,
jri ¼ P

nηrnjni. This turns out to converge quickly with
R, particularly at high temperatures [17,18,33–35]. In our
stochastic approach, the initial random vectors are created
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by distributing a given number of walkers randomly
throughout the Hilbert space with coefficients �1. These
initial states represent stochastic snapshots of the high-
temperature limit which is exactly reproduced in the limit
of large R.
As an initial test, Fig. 1 presents the temperature-

dependent energy, EðβÞ, in the one-dimensional 12-site
Hubbard model at U=t ¼ 1. Including all symmetry sec-
tors, the Hilbert space dimension is ≈3 × 106, with the
largest symmetry sector containing ≈7 × 104 determinants.
However, the system is significantly undersampled with
only 2 × 103 walkers used throughout, with the projected
Hamiltonian and overlap matrices averaged over ten
calculations for each initial vector, jri. All symmetry
sectors were obtained in one calculation, rather than
symmetry blocking Eq. (4), resulting in a choice of
R ¼ 1250, while the number of Krylov vectors used was
M ¼ 20, with eight Löwdin vectors kept to form the final
space. The results were found not to change significantly
by including more Löwdin vectors.
At high temperatures, results are calculated with great

accuracy. This is easily understood because the quantity
calculated at β ¼ 0,

P
R
r¼1

P
M
i¼0hrjĤjψ r

i ihψ r
i jri, is rigor-

ously equal to
P

R
r¼1hrjĤjri, and therefore, the quality is

mainly dependent on the sampling of the initial vectors
(and not on the error of individual eigenvalue estimates). At
low temperatures, the results are dominated by the ground
state, which has a large component in the sampled Krylov
vectors and, so, is accurately calculated by the
KP-FCIQMC method. However, at intermediate temper-
atures, the errors are larger. The most significant source of
error is in replacing an exact trace over fjnig by an
approximate one over fjrig in Eq. (4).
In Fig. 2, EðβÞ for the two-dimensional 18-site Hubbard

model at U=t ¼ 1 is presented. Including all symmetry

sectors, the Hilbert space dimension is ≈9 × 109, with the
largest symmetry sector containing ≈1 × 108 determinants.
Again, the space was undersampled, with 5 × 106 walkers
used throughout, with R ¼ 250 and M ¼ 20, of which 12
Löwdin vectors are kept. Since FTLM was unfeasible, also
plotted is a highly accurate ground-state FCIQMC energy
for comparison. A complete calculation took around ∼3000
core hours. We find, again, that the high-temperature results
have only a small variation between repeated calculations,
and we have a high degree of confidence here. At lower
temperatures, the confidence in the results is reduced, with
possible systematic errors including initiator error, bias in
the eigenvalue estimates, and an insufficient choice of R.
Dynamical correlation functions.—To demonstrate the

ability of the KP-FCIQMC method to calculate dynamical
quantities, we first consider the following zero-temperature
k-resolved single particle Green function, defined from
Eq. (1) with V̂ ¼ Â ¼ ĉ†k↓. The corresponding spectral
function, A1ðk;ωÞ ¼ −ð1=πÞIm½Gðk;ωÞ�, defines the band
structure of the material. The initial walker distribution is
given by the perturbed ground state, ĉ†kjΨ0i, where jΨ0i is
obtained from a prior ground-state FCIQMC calculation.
This starting wave function ensures that, on average, the
component of a particular eigenstate in any imaginary-time
snapshot is proportional to its transition amplitude in the
correlation function. This approach works particularly well
for spectra dominated by a small number of states with
large transition amplitudes. Because the transformation to
the Löwdin basis introduces large errors if many states are
kept (due to small overlap eigenvalues), we typically limit
the number of Löwdin vectors to between 10 and 20, which
limits the resolution of the spectrum. Furthermore, high-
energy states die away rapidly in the Krylov vectors, and
so, there tends to be significant stochastic errors associated
with the calculation of such states. Although this limits the
accuracy of the KP-FCIQMC method over a large energy
range, we find that the method is capable of producing
accurate spectra in the critical low-energy region and can
accurately capture important features such as band gaps.

FIG. 1 (color online). EðβÞ for the 12-site 1D Hubbard model at
U=t ¼ 1 sampled with ∼2 × 103 walkers, with comparison
FTLM. Error bars show standard deviation (note: not standard
error) over ten independent calculations to demonstrate the spread
of results. High and low temperature results are almost exact,
while at intermediate temperatures, the variance in the stochastic
sampling as well as systematic errors (such as from the nonlinear
diagonalization step, and finite R) increases the variation between
runs. Simulation parameters were τ ¼ 0.01, na ¼ 2.0, and a
deterministic space of double excitations [36,37].

FIG. 2 (color online). EðβÞ for the 18-site 2D Hubbard model at
U=t ¼ 1, with ground-state FCIQMC energy for comparison. Ten
independent simulations were used to create the standard devia-
tions shown as error bars. Simulation parameters were τ ¼ 0.01,
na ¼ 2.0, and a deterministic space of double excitations.
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Figure 3(a) presents A1ðk;ωÞ for the 14-site Hubbard
model at U=t ¼ 2 with ∼105 walkers, with S and T
averaged over ten repeats. Thirty-five Krylov vectors were
sampled and ten Löwdin vectors were retained. A complete
calculation for a given k sector typically took only ∼6 core
hours. The results are compared to highly accurate dynami-
cal Lanczos results, using 100 Lanczos vectors. Figure 3(b)
presents the local density of states, computed from
the results in (a) via AðωÞ ¼ ð1=NÞPkAðk;ωÞ. The
KP-FCIQMC results give high accuracy for low-energy
features, with sum rules and causality conditions exactly
fulfilled. Errors on individual poles can be estimated by
repeating results. By comparing eigenvalue estimates from
ten independent calculations, the band gap was estimated as
0.964 56ð14Þt compared to the exact value of 0.963 78t.
We also consider the s-wave pair-pair dynamic correlation

function, a two-body response property of significant
relevance in the detection of superconducting quasiparticles.

V̂ is defined by the singlet pairing operator, Δi ¼
ð1= ffiffiffi

2
p Þðci↑ciþ1;↓ − ci↓ciþ1;↑Þ, with Â ¼ V̂. In Fig. 4, we

present results for this pairing spectrum [A2ðωÞ] for the
10-site Hubbard model at U=t ¼ 1, by computing all
k-space contributions. The number of walkers was typically
between 103 and 104. The initiator adaptation was not
applied because the walker population is above the plateau
[16] height for this system. No averaging of T or S over
repeated calculations was performed. Once again, it is found
that low-energy features are calculated accurately, but the
quality decreases for higher energy regions of the spectrum.
Isolated excited states.—As a further application to

larger-scale ab initio systems, we consider the all-electron
ground and first excited state of Neon, in augmented
correlation-consistent valence double zeta (aug-cc-pVDZ)
and augmented correlation-consistent valence triple zeta
(aug-cc-pVTZ) basis sets [38]. We work in spaces where
Ms is constrained to be zero, but the total spin, S2, is not. The
S ¼ 0 and S ¼ 1 states are, therefore, both contained within
the same symmetry sector, and the spin gap can be directly
targeted with the KP-FCIQMC method. The determinant
space sizes with these two basis sets are ∼1.4 × 108 and
∼2.3 × 1011, respectively. In order to ensure large compo-
nents of the desired states in the sampled Krylov vectors, the
initial wave function was created from a linear combination
of trial estimates of the ground and first excited states at the
inexpensive configuration interaction with singles and dou-
bles level of theory.

FIG. 3 (color online). (a) A1ðk;ωÞ from k ¼ − 6
7
π (bottom) to

k ¼ π (top) for the 1D 14-site Hubbard model at U=t ¼ 2,
compared to dynamical Lanczos method. Poles coming from the
ground state or low-lying excited states with large transition
amplitudes are captured accurately. (b) The local density of states.
The low-energy results are reproduced accurately by the KP-
FCIQMC method while the qualitative behavior is captured at
high energies. Simulation parameters were τ ¼ 0.01, na ¼ 3.0,
and a deterministic space of 50 000 determinants [36].

FIG. 4 (color online). A2ðωÞ calculated for the 10-site Hubbard
model with U=t ¼ 1, and compared to the near-exact dynamical
Lanczos method. Inset shows integrated weight,

R
ω
0 A2ðω0Þdω0.

Simulation parameters were τ ¼ 0.01, with a deterministic space
of double excitations.

TABLE I. Results for the ground (S ¼ 0) and first excited (S ¼ 1) states of the Ne atom (Eh), comparing the
KP-FCIQMCmethod with the DMRG results (using M ¼ 500 spin-adapted renormalized states for the larger basis)
[42,43]. τ ¼ 0.001, na ¼ 3, and a deterministic space of single and double excitations.

S ¼ 0 S ¼ 1

Basis set KP-FCIQMC DMRG KP-FCIQMC DMRG

aug-cc-pVDZ −128.711 43ð4Þ −128.711 47 −127.977 87ð5Þ −127.977 94
aug-cc-pVTZ −128.825 8ð1Þ −128.825 14 −128.109ð1Þ −128.109 19
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KP-FCIQMC results are presented in Table I, with
density matrix renormalization group (DMRG) results
for comparison. The DMRG is a highly accurate algorithm,
which can also be extended to thermal and spectral
quantities and, so, is a suitable choice for comparison
[39–41]. KP-FCIQMC results and errors were estimated by
averaging over ten independent calculations. For the aug-
cc-pVDZ results, 2 × 105 walkers were used, while 2 × 106

walkers were used for the aug-cc-pVTZ basis, with each
calculation taking around 100 core hours for this larger
basis. Calculations used 35 Krylov vectors, with ten
Löwdin vectors retained, providing excellent agreement
with the DMRG results.
Conclusion.—We have presented a novel approach to the

calculation of excited state, spectral, and thermal properties
within the FCIQMC framework. In this approach, the full
Hamiltonian eigenvalue problem is projected into a sto-
chastically sampled Krylov subspace, thus, allowing finite-
temperature and dynamical quantities to be calculated.
Since the method exploits sparsity in the sampled wave
functions, the stochastic dynamic avoids storing Krylov
vectors in their entirety, rendering the approach scalable to
systems sizes outside the range of the Lanczos method,
although, in practice, this is likely to be restricted if
attempting to probe high frequency spectral features.
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