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We study the emergence of a fragmented state in a strongly interacting Fermi gas subject to a tunable
disorder. We investigate its properties using a combination of high-resolution in situ imaging and
conductance measurements. The fragmented state exhibits saturated density modulations, a strongly
reduced density percolation threshold, lower than the average density, and a resistance equal to that of a
noninteracting Fermi gas in the same potential landscape. The transport measurements further indicate that
this state is connected to the superfluid state as disorder is reduced. We propose that the fragmented state
consists of unpercolated islands of bound pairs, whose binding energy is enhanced by the disorder.
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The concept of fragmentation has been introduced to
extend the description of Bose-Einstein condensation to
situations when low-energy states become degenerate. This
condition can be achieved using internal atomic states,
momentum states in one-dimensional gases, or angular
momentum states in rotating gases. In real space, fragmen-
tation occurs in multiple well geometries, including optical
lattices [1]. In random potentials, fragmentation can mani-
fest itself as a glassy state [2,3] and has been studied
experimentally using ultracold bosonic gases [4-8].
Fermionic quantum gases differ from their bosonic counter-
parts in that the presence of spatial inhomogeneities directly
affects the pairing mechanism via confinement-induced
effects [9]. Consequently, pairing is an additional mecha-
nism by which disorder can influence superfluidity and
the occurrence of fragmentation. This is also discussed for
solid-state materials, where strongly inhomogeneous mate-
rials show superconductor-to-insulator transitions [10].

In this Letter, we present the observation of a fragmented
state of a strongly interacting Fermi gas, formed by tightly
confining a unitary gas along one direction and exposing it
to a microscopic disorder. Specifically, we start with a
Fermi gas containing 9.9(7) x 10* atoms in each of the two
lowest hyperfine states prepared in a homogeneous mag-
netic field of 834 G where the s-wave scattering length
diverges, resulting in a superfluid with short coherence
length [11]. The thin film is created by strongly confining
the gas along one direction using a suitably shaped off-
resonant laser beam. In addition, two high-resolution
microscopes are used to optically project a controlled
disorder potential into the two-dimensional region and to
image the atomic density distribution at a micrometer
length scale. The confined section is connected to two
larger trapping regions acting as reservoirs, allowing us to
perform two-terminal conductance measurements [12—14].

The thin film has a chemical potential y = 1.9A0, =
0.55(7) uK, where w, = 2z x 6.1(2) kHz is the trap fre-
quency along the tightly confined z direction. This yields
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an interaction parameter In(k,a,p) = 1.4 in the absence of
disorder, corresponding to a strongly interacting BCS-type
regime [15-17], with a,p denoting the two-dimensional

scattering length [30] and k, = \/2mu/ h? the momentum
associated with the chemical potential. We add a controlled,
repulsive disorder in the film [31] by projecting an optical
speckle pattern at a wavelength of 532 nm through one of
the microscope objectives. It can be imaged by the second
microscope, allowing for a precise characterization of
the disordered potential. The pattern has a Gaussian
envelope with a waist of 35 ym and a correlation length
o = 0.72(5) um, defined as the 1/4/e radius of a Gaussian
fit to the autocorrelation function. This introduces two new
energy scales, the average disorder strength V, defined as
the ac Stark shift at the maximum of the envelope, and the
correlation energy E, = h>/mo*. We have u > E,, so that
Anderson localization of individual atoms at weak disorder
should not occur [32,33]. However, we also have
E, =24 x E,, where E;,, = 0.24#/w, is the binding energy
of pairs in a unitary Fermi gas tightly confined along one
direction [15,16], implying that disorder will exert different
forces on the two paired constituents. In this regime,
pairing is directly influenced by disorder even though
the density within one well of the random potential may
be sufficient to sustain superfluidity locally. A similar
situation occurs in a granular superconductor with small
grains [34].

We first investigate the density distribution in the
disordered potential using high-resolution imaging.
Starting from a strongly interacting gas in the channel,
we switch on the disorder to a variable strength and wait for
150 ms for thermalization with the reservoirs. The atoms
are then illuminated by a 4 us pulse of resonant light with
an intensity of about 0.1 I, where I, is the saturation
intensity of the atomic transition, and the absorption pattern
is registered on an electron multiplied charge coupled
device camera. Typically, we average 20 of those pictures
to reduce noise, leading to the images shown in Fig. 1. All
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FIG. 1 (color).
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Evolution of the column density n (in units of 6=2) as the disorder strength is increased. (a)-(e) High-resolution

images of size 21 um x 72 pm of the in situ density distribution in the channel for increasing V/u. The saturated column density on
top and bottom marks the beginning of the reservoirs, which extend far beyond the field of view. The systematic uncertainty in V/u is
estimated to be 25%. (f) Image of the projected speckle pattern. The density ripples, gradually appearing from (a) to (e) can be
matched one to one to bright (potential hills) and dark spots (potential valleys) in the image. (g) Local column density as a function of
disorder strength for three specific points indicated in the potential landscape of (f) (point A, red; point B, blue; point C, cyan), each
computed within a region of size 1.2 ym x 1.2 um marked as red squares in (c). The gray data points are the mean column density in
the channel, computed in a central region of size 18 ym x 7 ym. (h) Variance of the density computed in the same central region. The
dashed line represents the theoretical percolation threshold for the potential seen by pointlike pairs.

subsequent analysis is performed on the averaged images
and for one given realization of the disordered potential
depicted in Fig. 1(f).

Figure 1(a) shows a clean film, smoothly connected on
two sides to reservoirs; see Refs. [12,17] for details. For
V/u = 0.45 [Fig. 1(b)], first density ripples appear. With
increasing V/u, they become more pronounced until
V/u = 1.8 [Fig. 1(d)], where unpopulated regions occupy
a significant fraction of the channel. At the largest disorder
strength of V/u = 3.3 [Fig. 1(e)], the gas is composed of
disconnected pockets separated by large empty regions.
Figure 1(f) shows the potential landscape observed directly
with our imaging system (see the Supplemental Material
[17]). In Fig. 1(g), the density at three distinct points
[labeled A, B, C in Fig. 1(f)] is monitored along the
fragmentation process. Points A and C correspond to a large
and a moderate potential hill and the local densities at these
positions decrease correspondingly fast. In contrast, point
B corresponds to a potential valley and its local density
remains constant, suggesting that the superfluid persists
at this point for all disorder strengths. The density averaged
over the center part of the channel is shown for comparison
in the same graph. It shows a smooth decrease with
increasing disorder, due to the repulsive nature of the
random potential.

Density modulations are quantified by the variance of the
density 6n’. n’c” is presented in Fig. 1(h) as a function of
disorder strength and shows a nonmonotonic evolution:
from zero disorder to V/u~1, density modulations

increase quickly although the average density decreases
in this interval. Having reached its maximum value at
around V/u ~ 1, the modulations slowly decrease for
higher disorder, likely because the average density
decreases.

As the thin film fragments under the influence of
disorder, the two reservoirs get gradually disconnected.
Both thermodynamic and transport properties of the
disordered thin film are a direct consequence of the
ability of atoms to reach the reservoirs from the center of
the film. Thermal equilibrium is ensured by atom
exchanges between the film and the reservoirs [35,36].
Semiclassically, the density distribution reflects the dis-
tribution of allowed regions, suggesting that the proper-
ties of the film are related to the percolation properties of
the density. We extract the latter by determining for each
disorder strength the length [ of the shortest possible
connecting path from one reservoir to the other, along
which the density n always stays above a certain density
level n (see the Supplemental Material [17]). The distance
between the two ends of the reservoirs is L =42 ym. A
typical result is presented in Fig. 2(a).

We evaluate the normalized path length //L as a function
of n. The results are shown in Fig. 2(b) for different
disorder strengths. Typically, //L remains close to 1 for n
much smaller than the mean density since the path remains
close to a straight line. With increasing 7, [/L increases
since regions of low density have to be circumvented.
Beyond a critical threshold 7 > ng,, no connecting path
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FIG. 2 (color).
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Percolation properties of the density distribution. (a) Shortest connecting path between the two ends of the reservoirs

(indicated by the red dashed lines) for V/u = 1.39 and a density level of 7 = 0.6/62 close to the percolation threshold. The path displays
strong deviations from a straight line and has a length of 1.5L. (b) Shortest path length as a function of density level 7 (in units of 6~2),
for V/u = 0.12,0.58, 1.39,2.78 in blue, cyan, green, red, respectively. (c) Percolation threshold as a function of disorder strength. The
solid line is a linear fit to the first 9 points. (d) Percolation threshold normalized to the average density as a function of disorder strength.
Error bars represent the statistical error in the measurement of 7. (e) Map of the relative path length as a function of 7z and V/u. The
dashed lines in (c) and (e) represent the theoretical percolation threshold of the potential seen by pointlike pairs of atoms.

exists anymore. For large disorder strengths (V/u =
1.39,2.78), 1/ L reaches values as high as 1.6 for n close
to ny,, limited by the extension of the cloud in the transverse
direction. In contrast, for low disorder strengths
(V/u = 0.12,0.58), the increase is limited to [/L ~ 1.2,
which is comparable to the detection-noise-induced
increase without disorder (see the Supplemental Material
[17]). These I(7) curves are typical for percolation tran-
sitions, and allow us to unambiguously identify the
percolation threshold of the density ny,. The thresholds
are plotted as a function of disorder strength in Fig. 2(c).
Two regimes can be identified: for V/u < 1, ny, shows a
fast decrease, whereas for V/u > 1, the decrease is slowed
down. They correspond to the regimes of growing and
saturated density modulations observed in Fig. 1(h).

The ratio of the percolation threshold to the mean density
is presented in Fig. 2(d). It starts very close to 1 for weak
disorder. This is expected since the percolation threshold of
a 2D, continuous, symmetric, random variable is its mean
[37]. For stronger disorder, the ratio drops well below 1.
From this, we deduce that the density profile has become
asymmetric; i.e., applied to our case, there are more empty
regions than regions having an excess density.

The path length //L as a function of disorder strength
allows us to further characterize the system. To show this,
we stack all [(n)/L curves as a function of disorder
strength on the vertical axis, encoding //L in color in
Fig. 2(e). It is set to gray if no connecting path exists. The
resulting 2D map is shown in Fig. 2(e), manifesting
the two regimes also in the path length: for V < y, the
maxima of [/L reached at the percolation transitions
remain moderate, whereas in the strongly disordered
regime V > u, large values of I[/L are encountered.
The transition observed in Figs. 2(c) and 2(e) coincides
with the maximum in the density modulations in
Fig. 1(h), confirming our interpretation of two regimes,

smooth and fragmented. For comparison, we have repro-
duced the percolation analysis on a thin film subject to a
homogeneous repulsive potential instead of the speckle
pattern [13], finding only a single smooth regime (see the
Supplemental Material [17]).

The evolution from smooth to fragmented density is
accompanied by a clear change in the transport properties.
We measure the dimensionless resistance r of the thin film
as a function of disorder strength [13,14,17]. The results are
presented in Fig. 3(a) and are similar to the case of a
disordered bosonic superfluid [14]. For the lowest disorder,
the resistance is below our measurement resolution, as it
should be for a superfluid gas. The resistance increases very
quickly until V/u ~ 0.7. Above this disorder strength, the
resistance increases more slowly. In order to disentangle the
effects of strong interactions from single-particle effects,
like simple atomic diffusion, we repeat the same experi-
ment with a weakly interacting Fermi gas, for the same
trapping potential, disorder configuration, and atom num-
ber. The measured resistances are shown in Fig. 3(a) as
gray circles and show a smooth exponential evolution
with disorder strength. For zero disorder, the resistance
corresponds to the contact resistance of the ballistic
channel [12].

We compare the transport properties of the two cases by
evaluating the ratio of absolute resistances R,,i/Rwir =
Cwir/Cuni X Funi/ Fwir» Where Cuyi (Cywip) is the compress-
ibility of the reservoirs for the unitary (weakly interacting)
Fermi gas. Assuming zero temperature and a harmonic trap
for unitary and weakly interacting Fermi gases, one obtains
Cwir/Cuni = V&g, where &g = 0.38 is the Bertsch param-
eter [38]. Figure 3(b) shows the evolution of R.;/Rwir
with disorder strength. We observe a sharp decrease for
V/u < 0.7. Interestingly, in the strong disorder regime at
V /i1, Ry /Rwir varies only weakly and remains close
to 1. This suggests that beyond a certain disorder strength,
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FIG. 3 (color online). Resistance of the thin film. (a) Dimen-
sionless resistance as a function of disorder strength for the
strongly interacting Fermi gas (blue squares) and for a weakly
interacting Fermi gas (gray circles) for comparison. (b) Ratio of
absolute resistances of the strongly and weakly interacting Fermi
gas. The dash-dotted horizontal red line emphasizes that the ratio
is close to 1 in the strongly disordered regime. The dashed
vertical black line indicates the theoretical percolation threshold
for the potential seen by tightly bound, pointlike pairs.

disorder dominates over interactions, even in a unitary
Fermi gas.

The drop of resistance takes place close to the transition
observed in the in situ data. This suggests that a percolation
process plays a role in the transition: for strong disorder, the
superfluid fraction should be localized and transport takes
place as if the gas was normal. At the percolation threshold,
the superfluid islands start to connect and the resistance
drops accordingly. This picture is similar to that of weakly
interacting bosons in one dimension, as theoretically
investigated in Refs. [39,40]. The classical percolation
threshold of the potential for a free atom of energy y is
reached in two dimensions at V = 1.92u [36,41]. However,
the potential seen by pairs is a more intricate problem
and in the limit of tightly bound, pointlike pairs, it is
equal to twice that for free atoms [38]. In this extreme case,
the percolation transition for pairs happens at V = 0.95.
This is indicated by the dashed, vertical lines in
Figs. 1(h), 2(c), 2(e), and 3. A reason why the resistance
starts to drop slightly later at V/u =0.7 could be that
density distributions are sensitive to pairing and conden-
sation, while currents are sensitive to superfluidity and
phase coherence. The latter may in addition be affected by
dynamical phenomena like phase slippage.

The interpretation in terms of percolation of pairs is
strengthened by the following observations. (i) For
V /i = 1, the resistance of the thin film is identical to that
of weakly interacting, unpaired fermions, suggesting that
pairs do not contribute to the transport above this disorder
strength. (ii) The in sifu measurements reveal regions where
the density is constant for all disorder strengths. This is
only possible if superfluidity is preserved locally, since the
normal gas has a significantly lower compressibility
[42,43] and could therefore not accommodate the same
amount of particles at fixed chemical potential imposed by
the reservoirs. (iii) In the percolation analysis leading to
Figs. 2(c) and 2(e), the sharp initial drop of the threshold
density ny, stops at V/u=1 as expected if pairs are
localized at this value. The remaining finite ng for
V/u > 1 we attribute to unpaired atoms, the same that
give rise to the normal-state transport properties in that
regime. (iv) The correlated disorder will naturally increase
the binding energy of pairs, localizing them into a single
potential minimum. This fact was already pointed out in
several theoretical analyses about cold atoms and dirty
superconductors [44-48], and emerges naturally for
classical disorder, where already at V/u ~ 0.3, we should
have E;, ~ E,; (see the Supplemental Material [17]).

While the percolation picture is a plausible candidate for
the nature of the fragmented state, the transition from
fragmented to superfluid is likely to be influenced by
tunneling between isolated clusters, leading to a disordered
Josephson junction array [10]. Furthermore, the disorder
can also enhance the interaction-induced depletion of the
condensate fraction of pairs [49-51]. Eventually, since the
thin film is quasi-2D, unbound vortex-antivortex pairs may
lead to dissipation before the superfluid cluster discon-
nects [52].

In the future, the ability to locally observe the density
distributions could be extended to a local measurement of
the single-particle density of states using radio-frequency
spectroscopy. This may allow us to directly relate our
findings to prominent models of disordered systems, such
as a Bose-glass [2,3], or a pseudogap phase [53].
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