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We experimentally demonstrate the existence of nondispersive solitary waves associated with a 2π phase
rotation in a strongly multimode ring semiconductor laser with coherent forcing. Similarly to Bloch domain
walls, such structures host a chiral charge. The numerical simulations based on a set of effective Maxwell-
Bloch equations support the experimental evidence that only one sign of chiral charge is stable, which
strongly affects the motion of the phase solitons. Furthermore, the reduction of the model to a modified
Ginzburg-Landau equation with forcing demonstrates the generality of these phenomena and exposes the
impact of the lack of parity symmetry in propagative optical systems.

DOI: 10.1103/PhysRevLett.115.043902 PACS numbers: 42.65.Tg, 42.65.Sf

Dissipative solitary waves have been observed as self-
localized optical wave packets along the direction of
propagation in many out of equilibrium and nonlinear
optical systems. In spite of their huge variety, many of
the observations reported so far can be cast in two main
categories depending on the presence or absence of coherent
energy input, i.e., the (lack of) phase symmetry of the system
[1]. In systems with phase symmetry, mode-locked laser
pulses have been analyzed as dissipative solitons of the
cubic-quintic Ginzburg-Landau equation [2]. Their optical
phase can wander in the course of time due to the neutral
mode created upon the formation of a coherent wave. On the
contrary, dissipative solitons in forced systems [3,4] have
been analyzed in the framework of the Lugiato-Lefever
equation [5], which includes a coherent forcing term acting
as a phase reference to which solitons will lock. In both
cases, the use of paradigmatic equations in addition to
system-specific models has allowed us to formally connect
these optical solitary waves to localized states as they appear
in fluid dynamics, plant ecology, granular media, or reaction-
diffusion systems [6–9]. In fact, optical dissipative solitons
can often be explained as perturbed solitons of the nonlinear
Schrödinger equation (in the weak dissipation limit [10–12])
or as locked fronts (in strongly dissipative systems [13,14]).
In this Letter, we report on dissipative solitons which

fundamentally consist of self-confined 2π phase rotations
embedded in a homogeneously phase locked background.
These “phase solitons” are generic features of spatially
extended oscillatory media under nearly resonant forcing
[15,16] and result from the mismatch between the natural
periodicity and the forcing. Here, the mismatch between the
free running laser and the external forcing frequencies leads
to the formation of phase kinks as result of a

commensurate-incommensurate transition [17,18]. This
connects our observations with the kink solutions observed
in many physical systems described by the Frenkel-
Kontorova model [19], such as fluxons in Josephson arrays
[20], local deformations in DNA chain [21], or excitable
waves in chemical and biological systems [22,23]. In
nonvariational systems, chirality acquired through a non-
equilibrium Ising-Bloch transition implies the motion of
domain walls [24–26]. A link can thus be established with
our observations of solitons that indeed move in the
reference frame of the propagating carrier wave (at light
speed). Due to the propagative nature of the experiment and
the noninstantaneous semiconductor medium, the system
lacks parity symmetry, which impacts the chiral charge and
therefore the motion of the phase solitons in this refer-
ence frame.
The experimental setup is based on a very large (length

Λ≃ 1 m) ring laser featuring a 4 mm-long (l) antireflection-
coated semiconductor medium inside a free space optical
cavity (Fig. 1, left) with low mirror transmissivity T ≈ 10%.
The device operates in a regime where the field envelope in
the single-mode regime would evolve on a slower time scale
than the active medium [29]. In order to avoid transverse
effects and directional competition [30], the optical cavity
includes an aperture and an optical isolator. The phase
symmetry of the free running laser is broken by applying an
external field provided by a grating tunable edge-emitting
laser followed by an optical amplifier. The emitted intensity
is acquired by a 9.5 GHz photodetector coupled to a
12.5 GHz real–time oscilloscope.
The laser is brought about 10% above threshold and

emits a superposition of many longitudinal modes. When
sufficiently strong external forcing is applied, the system
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may lock in phase to the injection beam. In order to
visualize the dynamics, we construct a comoving space-
time representation. We acquire very long time series (up to
107 points) in real time and then split them into segments of
equal length, corresponding to the time it takes for light to
complete a full round-trip of the ring cavity. The segments
are then stacked on top of each other, each of them showing
the state of the system at a determined round-trip number.
In this way, we obtain a spatiotemporal representation of
the evolution of a 1D system, the horizontal dimension
showing the state of the system at a given moment and the
vertical dimension its evolution over a discrete time
measured in units of round-trips. Thanks to very well
separated time scales (dynamics during one round-trip and
evolution over the round-trips), the resulting space-time
diagrams display very clearly the evolution of the system.
An example is shown on Fig. 1 (right). This regime is

experimentally attained by choosing initially a very strong
injected power (sufficient to phase lock the ring laser) and
setting the detuning to bring the system very close to
unlocking. Then, upon progressive decrease of the injection
power and adjustment of the detuning to remain close to the
unlocking transition, chaotic regions spontaneously appear.
Here, during the first 1000 round-trips, a few spatial regions
are in a complex dynamical state with only small segments
locked to the external forcing. Between round-trips 1000
and 3000, a few isolated structures emerge from the chaotic
domains and drift towards the right, eventually hitting a
larger chaotic domain which seemingly absorbs them. At
round-trip 4000, a new solitary wave emerges from the
chaotic domain and drifts first to the left and later to the
right, going through the boundary on the right and
emerging on the left about round-trip 7000. The time trace
shown on top of right panel is a cut through the space-time
diagram taken at round-trip 6300 (red line). We attribute the

strong asymmetry between left and right to the lack of
parity symmetry (also discussed below) in this propagative
system with noninstantaneous medium.
Further information about the nature of these isolated

structures can be gained by measuring the dynamics of
the optical phase. This is achieved by measuring simulta-
neously the result of interference between the forcing beam
and the output beam of the system with three different
dephasing conditions via a 3 × 3 fiber coupler, a simple
formula allowing us to compute instantaneous intensity and
relative phase [31]. This measurement is shown in Fig. 2. On
the left, the space-time diagram shows the coexistence of an
isolated structure with a chaotic domain, which does not
survive the collision with the former. The field dynamics is
represented in the insets in the ½ReðEÞ; ImðEÞ� plane. During
the first 1000 round-trips (lower inset), the regions visited by
the system cover a large part of the plane, indicating that the
dynamics cannot be well described on this bidimensional
phase space. On the contrary, at the end of the space-time
diagram (top inset) most of the system is locked to the
external forcing and locally circles around the origin,
accumulating 2π in the field phase. Localized Bloch
domains carry such a chiral charge but in the present case,
only one stable stationary state exists, and the localized states
take the form of a single phase kink [32]. As expected [33],
the dynamics of the field in presence of solitons projects
very neatly on a bidimensional space.
Contrary to the limit case of a pure phase dynamics

described by the overdamped sine-Gordon equation [18], the
phase rotation is accompanied here by intensity dynamics,
which takes the trajectory of the system very close to the
origin, where the chiral charge can disappear via the
occurrence of a defect [16]. This provides an interpretation
for the right panel of Fig. 2. Two identical phase solitons
initially propagate at a fixed distance but at round-trip 3200,
one of them changes speed and approaches the other until
they collide. This interaction does not lead to a single kink
with a 4π phase rotation preserving the total chiral charge.
Rather, we observe that a single phase soliton with 2π charge
emerges from the collision.

FIG. 1 (color online). Left: Scheme of the experimental setup.
Right: Color coded [27,28] emitted intensity in a space-time
representation. The horizontal axis is a fast time scale normalized
to the round-trip time of the ring cavity τ (close to 3.6 ns) and the
vertical axis is a slow time scale, in units of τ.

FIG. 2 (color online). Left: Stable phase soliton hosting a 2π
phase slip (see inset) at steady state after interaction with a
turbulent state. Right: Collision and fusion of two solitons. The
arrows indicate the direction of rotation along the orbit.
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Figure 3 shows the spontaneous nucleation of a phase
soliton from a turbulent state. Although the phasor plot in
the lower inset suggests the presence of multiple trajecto-
ries circling around the origin, only the 2π kink at the
turbulent domain border survives at the end giving rise to a
phase soliton. This is actually the typical way in which
phase solitons appear in our experiment. The space-time
diagram of Figs. 3 and 1 are strongly reminiscent the kink
breeding regime documented in [16]. Yet, we note that the
boundaries of the chaotic domains are always markedly
different, which we relate to the lack of parity symmetry in
the spatial dimension.
To interpret the experimental results, we extend the

semiconductor models of [34,35] to include the field
longitudinal propagation in a coherently driven, unidirec-
tional cavity, partially filled by an active medium. The
phenomenological model for the semiconductor microscopic
susceptibility allows for the dependence on frequency and
carrier density of the refractive index and the gain line.
Compared to the Haus model for pulse propagation in a

laser with a saturable absorber [36], our approach provides
a more realistic description of the nonlinear radiation-
matter interaction in the semiconductor material. Thanks to
the introduction of material polarization, we do not need to
introduce an ad hoc spectral filtering section to account for
material gain dispersion and avoid pulses collapse [37] as
happens in lumped-element methods [38].
The model, including the low transmission limit and

neglecting diffraction, yields a set of equations for the
normalizedpolarizationP and carrier densityD both evolving
on a faster time scale than the field envelope E, which read

∂τE ¼ −η0∂ηEþ σ½y − ð1þ iθÞEþ P�; ð1Þ

∂τP ¼ ½ΓðDÞð1 − iαÞ þ 2iδðDÞ�½ð1 − iαÞED − P�; ð2Þ

∂τD ¼ b½μ −D − ðE�Pþ EP�Þ=2�; ð3Þ

with periodic boundary conditions Eð0; τÞ ¼ Eð1; τÞ. The
spatial variable is scaled to the length of the active medium,
i.e., η ¼ z=l, and the temporal variable τ is actually the
retarded time tþ zðΛ − lÞ=ðclÞ scaled to the polarization
decay time τd, the parameter η0 ¼ cτd=Λ is the ratio of the
cavity free-spectral range to the gain linewidth, which is very
small for our long cavity, meaning that even close to the
threshold a large number of longitudinal modes may expe-
rience gain. The normalized decay rates σ and b are the
polarization–to–photon and polarization–to–carrier lifetime
ratios, respectively; y is the amplitude of the injected field
(assumed real), α is Henry factor, μ is the scaled pump
parameter. μ ¼ 1 is the free running laser threshold, and the
value we use (μ ¼ 1.01, not critical) has been chosen as
the one leading to time traces most similar to those of the
experiment. θ is the detuning between the frequency of
the injected field (taken as the reference frequency) and
the closest ring cavity resonance, multiplied by the photon
lifetime.
The functions ΓðDÞ ¼ 0.276þ 1.016D, δðDÞ¼

−0.169þ0.216D account for the finite gain linewidth
and for the frequency detuning between gain and
cavity, both dependent on the carrier density D and
were parametrized in previous work by fitting the
microscopic susceptibility of the active medium [34,35].
Equations (1)–(3) admit the stationary solution
E ¼ jEsjeiϕ, P ¼ Ps, D ¼ Ds, with Ds ¼ μ=ð1þ XÞ,
Ps ¼ ð1 − iαÞEsDs,

ϕ ¼ arctan ½ðαDs þ θÞ=ðDs − 1Þ�; ð4Þ

y2 ¼ X½ð1 −DsÞ2 þ ðθ þ αDsÞ2�; ð5Þ

and X ¼ jEsj2. The input-output relation of Eq. (5) depends
on the parameters μ, α, θ and it can be S-shaped (three-
positive roots, A, B, and C in Fig. 4 for y ¼ 0.0014), which
turns out to be a necessary condition for the existence of
phase solitons [16,18]. In particular, the three fixed points
in the subspace ½ReðEÞ; ImðEÞ� are, respectively, a stable
node (A), a saddle (B), and an unstable focus (C). The
corresponding phase portrait makes the system excitable in
the absence of propagation (∂=∂z ¼ 0) as A and B approach
each other [16,18,33]. Linear stability analysis of the input-
output relation shows that for this parameter set, the phase
locked solution is stable on the whole upper branch, which
disappears via a saddle-node bifurcation at the turning point,
the lower branch and the negative slope branch being always
unstable. The shaded region in y on Fig. 4 corresponds to the
stability domain of phase solitons, which grows very fast with
μ. Below the shaded region, the locked solution becomes
unstable and the system develops an irregular spatiotemporal
behavior, while above the system uniformly locks to the
forcing, preventing the existence of phase solitons.
In the numerical simulations, a stable phase soliton can

be obtained with initial conditions corresponding to the

FIG. 3 (color online). Two phase solitons emerge from turbu-
lent regions. Each of them hosts a 2π charge, which is already
present in the preexisting chaotic domains.
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locked state A, to which we superimpose a positive phase
kink of 2π along z for the field E. The final state is a
traveling pulse with a 2π chiral charge and a width of few
hundreds of ps, which reproduces well the experimental
results (Fig. 5, left). Its phasor representation in the sub-
space ½ReðEÞ; ImðEÞ� is shown in Fig. 4 by a blue line lying
in the shaded plane, which confirms that the dynamics can
be effectively embedded in the 2D subspace.
Multiple structures separated by varying distances can

also exist simultaneously (Fig. 5, right). Within parametric
regimes compatible with the experiment, any structure
missing the chiral charge or with the wrong charge sign
is invariably unstable, though long transients can occur.
It has been shown [18] that a forced two–level laser

model (Maxwell-Bloch equations) close to threshold can be
reduced to a modified Ginzburg–Landau equation which
admits a free energy equivalent to the potential of the
Frenkel-Kontorova model [17–19]. Under certain para-
metric conditions, the laser dynamics turns out to be slaved
to the phase, which obeys an overdamped sine–Gordon

equation [18]. Although the latter limit does not apply to
our experiment, Eqs. (1)–(3) can be reduced to a modified
forced Ginzburg–Landau equation using experimentally
meaningful approximations. Precisely, we assume that the
laser is very close to the threshold setting μ − 1 ¼ ϵ ≪ 1,
and that the injected amplitude y and the detuning between
the free running laser frequency and the injected frequency,
which in our model is θ þ α, are both of order ϵ. A multiple
scale analysis truncated at order ϵ2 has allowed us to
eliminate the polarization and carrier density while pre-
serving the main features of the semiconductor suscep-
tibility (finite width and position of the gain peak). The
final equation for the field envelope E reads

η0∂ηEþ ∂τE ¼ σfyþ ½μ − 1 − iðμαþ θÞ�E
− ð1 − iαÞjEj2Eþ d½η20∂2

η

− 2iδð1Þη0∂η�Eg; ð6Þ

with d ¼ ½Γð1Þ2ð1 − iαÞ�−1. The equation differs from that
of [18] mainly for the last term, which describes a non-
symmetric gain line, and for the presence of the Henry
factor αwhich implies that the medium is dispersive even at
resonance, two typical features of semiconductors. In a
framework moving at velocity η0 (i.e., comoving with the
soliton), Eq. (6) lacks the parity symmetry η → −η of the
standard Ginzburg–Landau equation due to nonvanishing
δð1Þ. However, unless that parameter is set to an unreal-
istically large value, Eq. (6) supports both chiral charges
contrary to the experiment and the complete model.
Therefore, we conclude that the main mechanism for chiral
selection lies in the noninstantaneous medium dynamics,
which heavily breaks the η → −η symmetry in a propagative
system.
In conclusion, we have observed robust solitary optical

structures which propagate in a highly multimode semi-
conductor ring laser with coherent forcing. We have
measured directly their optical phase and showed that they
carry a chiral charge whose sign is decisive for their
stability. Numerical simulations of a physical model taking
into account both the semiconductor material susceptibility
and the geometry of the experiment allow the interpretation
of the experimental observations in terms of (multistable)
phase solitons. In addition, multiple scale analysis has
allowed us to understand these solitons as the elementary
excitations of oscillatory media under nearly resonant
forcing close to a commensurate-incommensurate transi-
tion. Finally, downscaling the whole experiment to mono-
lithic semiconductor ring lasers may lead to robust and
ultrafast phase solitons for phase information encoding and
regeneration in coherent optical communications [39,40].

The authors would like to thank Dr. Lionel Gil for many
helpful discussions. B. K acknowledges support from the
Irish Research Council. This work was conducted in part

FIG. 4 (color online). Homogeneous synchronous states curve
for μ ¼ 1.01, α ¼ 3, θ ¼ −2.97. The blue trajectory corresponds
to the phase soliton numerically excited for y ¼ 0.0014 as in
Fig. 5. The points denoted A, B, and C represent a stable node, an
unstable saddle, and an unstable focus, respectively.
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