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The quantum capacity of a quantum channel is always smaller than the capacity of the channel for
private communication. Both quantities are given by the infinite regularization of the coherent and the
private information, respectively, which makes their evaluation very difficult. Here, we construct a family
of channels for which the private and coherent information can remain strictly superadditive for unbounded
number of uses, thus demonstrating that the regularization is necessary. We prove this by showing that
the coherent information is strictly larger than the private information of a smaller number of uses of the
channel. This implies that even though the quantum capacity is upper bounded by the private capacity, the
nonregularized quantities can be interleaved.
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Efficient information transmission is the cornerstone of
all information processing tasks in our interconnected
world. In the most basic scenario, two parties, linked by
a fixed communication channel wish to exchange messages
with each other. What is the maximum rate at which they
can reliably transmit information?
Classical information theory gives an exhaustive answer

to this question [1]. There exists an efficient convex
optimization algorithm which takes the description of a
channel and calculates its capacity to convey information.
This is the consequence of a particularly simple analytic
expression for the classical capacity of a channel. Our
world is inherently quantum and when we turn to the
channels that transmit quantum information we are able to
perform many novel information processing tasks which
are impossible in the classical theory, such as establishing
entanglement between sender and receiver. Presently, when
confronted with the above question for the quantum
channels, there is no known efficient algorithm that takes
the description of an arbitrary channel and calculates its
capacity. Different types of capacity of the quantum
channel are defined as regularized quantities [2–9], which
implies that in order to compute them it is necessary to
perform an unbounded optimization over the number of
the copies of the channel. In practice it means that to estimate
the capacity for n uses of the channel the dimension
of the state space which one has to optimize over may
increase exponentially in n.
Arguably, the biggest practical success of quantum

information theory to date is the possibility of quantum
key distribution (QKD) [10–12]. QKD allows two distant
parties to agree on a secret key independent of any
eavesdropper. The required assumptions are access to
a quantum channel with positive private capacity and

the validity of quantum physics. However, in practice
one does not know the quantum channel exactly, and to
characterize it one uses a public authentic classical
channel. On the other hand, key distribution is a primitive
that can only be implemented with classical resources if
one is willing to constrain the power of the eavesdropper.
Even though there exist practical QKD schemes which
enable secure communication over large distances with
high key rates [13–16], some of the fundamental questions
about the capacity to transmit secure correlations remain
unanswered.
There are essentially two quantities that describe the

ability of the channel to send secure messages to the
receiver, and consequently, generate secret keys. The first
one is called private capacity P [6,17]. It can be viewed as
the optimal rate at which the sender, Alice, can send
classical communication to the receiver, Bob, while keep-
ing Eve in a product state with Alice and Bob. For a
quantum channel, which is a completely positive trace-
preserving map N , it is given by

PðN Þ ¼ lim
n→∞

1

n
Pð1ÞðN⊗nÞ; ð1Þ

The private capacity is given by the regularization of
Pð1ÞðN Þ, the private information of the channel

Pð1ÞðN Þ ¼ max
ρ∈R

IðX;BÞ − IðX;EÞ; ð2Þ

where the maximum is taken over the set of classical-
quantum states R of the form ρXA ¼ P

xpxjxihxjX ⊗ ρAx ,
with X being an auxiliary classical register, and IðX;BÞ the
quantum mutual information [18].
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This capacity also characterizes the optimal rates for key
distribution [6,17]. A better understanding of this quantity
would allow us to evaluate precisely the usefulness of
communications channels for practical QKD links.
In the case of private capacity, the eavesdropper, Eve, is

given a purification of the channel output which means that
she is as powerful as is allowed by quantum mechanics.
However, this setting may be too restrictive for practical
applications given the current state of the art in quantum
information processing. A natural relaxation of this strong
security requirement is to assume that Eve obtains infor-
mation about the key by performing a measurement on her
state. This security requirement is reflected in the second
quantity, locking capacity L. By L we denote all the
recently introduced locking capacities [9] of a quantum
channel. They are defined by the optimal rate of reliable
classical communication requiring Eve to have vanishing
accessible information about the message. This difference
in the security criterion has striking consequences. For
instance, it implies that some channels that have no private
capacity have close to maximum locking capacity [19], and
for some relevant classes of channels locked communica-
tion can be performed at almost the classical capacity rate
[20]. The following upper bound is known for the locking
capacities:

LðN Þ ≤ LuðN Þ ¼ sup
n

1

n
Lð1Þ
u ðN⊗nÞ; ð3Þ

where Lð1Þ
u , which we will call the locking information, is

given by

Lð1Þ
u ðN Þ ¼ max

ρ∈R
IðX;BÞ − IaccðX;EÞ: ð4Þ

The accessible information IaccðX;EÞ ¼ maxΓIðX;YÞ,
where Γ is the set of all POVMs on E.
Two other important types of capacity of a quantum

channel are the quantum [2,5,6] and classical capacity [3,4]
given by

QðN Þ ¼ lim
n→∞

1

n
Qð1ÞðN⊗nÞ; ð5Þ

CðN Þ ¼ lim
n→∞

1

n
Cð1ÞðN⊗nÞ; ð6Þ

where

Qð1ÞðN Þ ¼ max
ρA

HðBÞ −HðEÞ; ð7Þ

Cð1ÞðN Þ ¼ max
ρ∈R

IðX;BÞ: ð8Þ

The optimization of the quantum capacity is performed
over all valid states on the input register A while the
optimization of the classical capacity is performed over the
set R as in Eq. (1), and H is the von Neumann entropy.
The form of the expression for the capacities in Eqs. (1),

(3), (5), and (6) contains the optimization over an infinite
number of copies of the channel. This is not at all
computationally feasible. Do we have to resort to the
infinite regularization, or, perhaps, we can stop the regu-
larization after a constant number of uses? It has recently
been shown that at least in the case of the quantum capacity
the calculation cannot involve a fixed number of channel
uses even when we attempt to answer the question whether
the channel has any capacity at all [21]. For the classical
capacity, which is known to be superadditive for two uses
of the channel [22], there is some evidence that ultimately
the regularization might not be required [23,24].
Despite the significance of the private and locking

information, we still understand very little about its
behavior when the communication channel is used many
times. Authors in Refs. [25,26] provide evidence that
Pð1ÞðN Þ is superadditive for a small finite number of
channel uses, although the magnitude of this effect is
quantitatively very small. Recently, the existence of two
quantum channels N 1;N 2 with CðN 1Þ ≤ 2;PðN 2Þ ¼ 0
for which PðN 1 ⊗ N 2Þ ≥ 1=2 log d, where d is the
dimension of the output of the joint channel, has been
shown [27]. This example shows that the private capacity is
a superadditive quantity (this was also proved in Ref. [28]
using a different construction).
Even less is known about the locking capacity. It follows

trivially that Lð1Þ
u is sandwiched between the classical

information and the private information [9]:

Qð1ÞðN Þ ≤ Pð1ÞðN Þ ≤ Lð1Þ
u ðN Þ ≤ Cð1ÞðN Þ: ð9Þ

Here we show that private information can be strictly
superadditive for an arbitrarily large number of uses of the
channel. More precisely, we prove the following theorem:
Theorem 1.—For any n there exists a triple ðn; p; dÞ and

a quantum channel N n;p;d such that for n > k ≥ 1

1

k
Pð1ÞðN⊗k

n;p;dÞ <
1

kþ 1
Qð1ÞðN⊗kþ1

n;p;d Þ: ð10Þ
This proves that entangled inputs increase the private

information of a quantum channel and this effect persists
for an arbitrary number of channel uses. Furthermore,
since Qð1ÞðN n;p;dÞ ≤ Pð1ÞðN n;p;dÞ < Qð1ÞðN⊗2

n;p;dÞ=2 ≤
Pð1ÞðN⊗2

n;p;dÞ=2 < … < Qð1ÞðN⊗n
n;p;dÞ=n ≤ Pð1ÞðN⊗n

n;p;dÞ=n
follows from Theorem 1, it turns out that even though the
quantum capacity is upper bounded by the private capacity,
the nonregularized quantities can be interleaved. As a
bonus, we obtain a qualitatively different proof for the
unbounded superadditivity of the coherent information
[21]. The construction of the latter exhibits a jump from
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zero coherent information to positive coherent information
between n0 and n1 uses, with n0 ≪ n1; here, we obtain a
jump in the coherent information (also in the private
information) between consecutive uses for each of the first
n uses of the channel for any fixed n > 1.
We now introduce the key components of our construc-

tion which are required to prove Theorem 1.
Main construction: Switch channel.—The action of a

channel N A→B can be defined via an isometry VA→BE:
N A→BðρÞ ¼ trEVρV�, and its complementary channel is
N A→E

c ðρÞ ¼ trBVρV�. Register superscripts are omitted
when they do not add to clarity.
We first introduce switch channels:

N SA→SBðρSAÞ ¼
X
i

PS→S
i ⊗ N A→B

i ðρSAÞ: ð11Þ
A switch channel consists of two input registers S and A of
dimensions d and n, respectively. Register S is measured in
the standard basis and conditioned on the measurement
outcome i; a component channel N i is applied to the
second register. The computation of Pð1ÞðN Þ and Lð1Þ

u ðN Þ
when N is of the form (11) can be simplified; it suffices to
restrict inputs to a special form. The equivalent result for
the quantum capacity was proved in Ref. [29].
Lemma 1.—Consider a switch channel N SA→SB

and let T ¼ fρ∶ρ ¼ P
xpxjxihxjX ⊗ jsihsjS ⊗ ρAxg.

Then (1) Pð1ÞðN Þ¼max1≤s<nPð1ÞðN sÞ, (2) Lð1Þ
u ðN Þ¼

max1≤s<nL
ð1Þ
u ðN sÞ. Both Pð1ÞðN Þ and Lð1Þ

u ðN Þ can be
achieved by some ρ ∈ T .
The proof of Lemma 1 is located in the Supplemental

Material [30].
There are two types of channels which we will use in

place of N i. The first channel is the erasure channel:

EA→B
p;d ðρAÞ ¼ ð1 − pÞρB þ pjeihejB; ð12Þ

where jeihej is the erasure flag and d the dimension of the
input register A. For p ≤ 1=2 the erasure channel is degrad-
able and QðEp;dÞ ¼ PðEp;dÞ ¼ maxf0; ð1 − 2pÞ log dg,
and CðEp;dÞ ¼ ð1 − pÞ log d [31].
For any quantum channel N used alongside Ep;d the

classical information is additive:
Lemma 2.—For all quantum channels N

Cð1ÞðN ⊗ E⊗n
p;dÞ ¼ Cð1ÞðN Þ þ nCð1ÞðEp;dÞ: ð13Þ

The proof of Lemma 2 is located in the Supplemental
Material [30].
Intuitively, Lemma 2 states that the erasure channel

cannot convey more information than an identity channel of
dimension d1−p, even in the presence of other channels.
Furthermore, we can use the classical capacity to obtain a
trivial bound for the locking and private information.
The second channel that we use alongside Ep;d is a

d-dimensional “rocket” channel, Rd [27]. It consists of

two d-dimensional input registers A1 and A2 and a
d-dimensional output register B. A1 and A2 are first subject
to a random unitary and then jointly decoupled with a
controlled dephasing gate. Then, the contents of A1

becomes the output of the channel and the contents of
A2 is traced out. Bob also receives the classical description
of the unitaries which acted on A1 and A2. Since dephasing
occurs after the input registers have been scrambled by a
random unitary, it is very hard for Alice to code for such
a channel; hence, it has a very low classical capacity:
CðRdÞ ≤ 2.
Our switch channel construction has the following form:

N n;p;d ¼ P0 ⊗ Rn
d þ P1 ⊗ ~En

p;d: ð14Þ

That is, it allows Alice to choose between Rn
d ¼ R⊗n

d and
~En
p;d ¼ Ep;d ⊗ E1;d2n−1 , a d-dimensional erasure channel

padded with a full erasure channel to match the input
dimension of Rn

d.
Upper bound.—To upper bound the private information

of N n;p;d we only need to optimize over all the possible

different choices ofRn
d and ~En

p;d. Thus, the upper bound for
Pð1ÞðN⊗k

n;p;dÞ for k ≥ 1 reads

Pð1ÞðN⊗k
n;p;dÞ ¼ max

0≤i≤k
Pð1ÞðE⊗i

p;d ⊗ ðRn
dÞ⊗k−iÞ

≤ max

8>>><
>>>:

Cð1ÞððRn
dÞ⊗kÞ

max
1≤i≤k−1

Cð1ÞðE⊗i
p;d ⊗ ðRn

dÞ⊗k−iÞ;

Pð1ÞðE⊗k
p;dÞ

≤ max

8>><
>>:

2kn;

ð2nþ ðk − 1Þð1 − pÞ log dÞ:
ð1 − 2pÞk log d

ð15Þ

Superadditivity ofPð1Þ.—We denote A½k�
xy with superscript

½k� to indicate the kth use of the channel and the subscript
xy to indicate the input register as pictured in Fig. 1.
Consider the following protocol for conveying quantum

information over jþ 1 > 1 uses: Alice chooses the rocket
channel for the first use and En

p;d for the remaining j uses.
She prepares a maximally entangled state in the registers

RzA
½1�
z1 and A½1�

z2A
½zþ1�
11 for z ∈ ½1; j� (see Fig. 2). After the

first use of N n;p;d the registers A½1�
11; A

½1�
21;…; A½1�

j1 get
completely dephased byRn

d. Without the auxiliary registers

A½2�
11; A

½3�
11;…; A½jþ1�

11 Bob is unable to undo the dephasing
and thus establish maximally entangled states between the
registers R1; R2;…; Rj and B1; B2;…; Bj, respectively. So
Alice transmits the former registers using the erasure

channel. The input registers A½1�
ki of the rocket channel

for k ≥ j, i ¼ f1; 2g and the registers that pad the dimen-
sion of the erasure channel do not play any role in the

PRL 115, 040501 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JULY 2015

040501-3



protocol, so Alice can send any pure state through each of
them. The input state without the padding subsystems has
the form

ρ ¼ ⊗
j

z¼1

�
Φþ

RzA
½1�
z1

⊗ Φþ
A½1�
z2A

½zþ1�
11

�
; ð16Þ

where Φþ
AB ¼ 1=d

P
d
i;j¼1 jiiihjjjAB.

We now analyze the coherent information established by
this protocol between Alice and Bob. For every use of the
rocket channel, if the auxiliary register gets erased the
coherent information is zero—the state is completely
dephased in a random basis. If the auxiliary register is
transmitted to Bob, he can reverse the action of the channel
and obtain a maximally entangled state [27]. This occurs
with probability 1 − p, in which case the coherent infor-
mation is logd. Since this process is repeated j times, the
regularized coherent information is

Qð1ÞðN⊗jþ1
n;p;d ; ρÞ ¼

j
jþ 1

ð1 − pÞ logd: ð17Þ

This immediately gives a lower bound for the locking
and private information. Now, we are ready to prove
Theorem 1.
Proof.—Fix d ¼ 24n

2=ð1−2pÞ and p ¼ ð11=24Þ. Then
the regularized upper bounds (15) for Pð1Þ after k uses
of the channel have the form U1

k ¼ ð2n=kÞ, U2
k ¼

f2n½13ðk − 1Þnþ 1�=kg and U3
k ¼ 4n2; the lower bound

(17) after kþ 1 uses of the channel has the form
Lkþ1 ¼ ½26kn2=ðkþ 1Þ�.

Consider the differences Di
k ¼ −Ui

k þ Lkþ1 for i ¼
1; 2; 3. Then, a simple substitution shows that D1

k¼
½26kn2=ðkþ1Þ�−ð2n=kÞ, D2

k¼−½2nðk−13nþ1Þ=kðkþ1Þ�,
D3

k¼½2ð11k−2Þn2=ðkþ1Þ�. All of the differences are
positive for n > k ≥ 1. □

Superadditivity of Lð1Þ
u .—We now study the conditions

necessary to obtain a similar result for the locking infor-
mation of our channel construction. First, we need to
establish several bounds about the locking capacity of the
channels which are used in it. The locking information of
the erasure channel is currently unknown. An upper bound
is obtained in the following lemma:
Lemma 3.—Let p ≤ 1=2, the locking information of Ep;d

is upper bounded by

Lð1Þ
u ðEp;dÞ ≤ ð1 − pÞ logd − pγd log e; ð18Þ

where γd≔ ln d −
P

d
t¼2 t

−1, and limd→∞γd ¼ γ is Euler’s
constant.
The proof of Lemma 3 is located in the Supplemental

Material [30].
Some algebra shows that the upper bound given by

Lemma 3 combined with the lower bound given by Eq. (17)
does not yield superadditivity. Our upper bound is very
loose and might be improved: we show that if Eve applies
the trivial strategy and performs a random measurement
on her state, then she would be able to extract the amount
of information which is equal to subentropy [32]. The
maximum value of the latter is constant and is independent
of the dimension. It is natural to conjecture that Eve could
extract an amount of information which is proportional to
the dimension of her system by applying some other
strategy. The smallest bound on Eve’s accessible informa-
tion as a function of the dimension of her output which
leads to superadditivity of the locking information in our
construction is given below:
Conjecture 1.—[Sharper upper bound for Lð1Þ

u ]

Lð1Þ
u ðEp;dÞ ≤ ð1 − pÞ log d − pϵ log d; ð19Þ

where ϵ > ½ð1 − pÞ=pðn − 1Þ�.
The proof of the conjecture together with the techniques

used in the proof of Theorem 1 would allow us to prove
superadditivity.

FIG. 1. The channel has two input registers: the control register
S and the data register A ¼ A11A12A21…An2. The control register
is measured in the computational basis and depending on the
output either the erasure channel ~En

p;d or n copies of the
d-dimensional rocket channel are applied. For each Axy, xy
enumerates the input register. In particular, whenRn

d acts on A, x
denotes the input to the xth instance of Rd. For eachRd, while y
specifies one of the two inputs to Rd.

FIG. 2. The first part of the protocol consists in sending a state
maximally entangled between the different inputs of the rocket
channel and an external reference.
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Discussion.—In this Letter we have constructed a family
of channels for which the private and coherent information
can remain strictly superadditive any number of uses of the
channel. We are able to prove this result by showing that the
private information of k uses of the channel is smaller than
the coherent information of kþ 1 uses. That is, both
quantities can be interleaved use after use for the first n
uses of the channel. This shows that even though the
quantum capacity is upper bounded by the infinite regu-
larization of the private information, the quantum capacity
can be larger than a finite regularization of the private
information.
Similarly, we expect weak locking information to be

superadditive. For this to be true with our channel con-
struction a tighter bound on the accessible information to
the environment would be necessary.
The results shown here raise questions about the proper-

ties that a channel has to verify such that its different
capacities can be computed exactly using only finitely
many (preferably only a few) copies of the channel.
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