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We present the first experimental observation of a topological transition in a non-Hermitian system. In
contrast to standard methods for examining topological properties, which involve probing edge (or surface)
states, we monitor the topological transition by employing bulk dynamics only. The system is composed of
a lattice of evanescently coupled optical waveguides, and non-Hermitian behavior is engineered by
inducing bending loss by spatially “wiggling” every second waveguide.
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Topological transport was first proposed by Thouless,
Kohmoto, Nightingale, and den Nijs [1], who showed that
the Hall conductance of a two-dimensional electron gas is
proportional to an integer-valued topological quantity. This
introduces a striking robustness: small changes to the
system (including disorder) have no effect [2]. Nontrivial
topology implies conducting surface (or edge) states, which
play a central role in many topological phenomena. A
subsequent resurgence of interest in topological phenom-
ena began with the prediction and observation of the
quantum spin Hall effect [3–5], followed by the prediction
[6,7] and observation [8] of an analogue of the quantum
Hall effect for electromagnetic waves in the microwave
regime. Proposals were subsequently put forward on how
to achieve topologically protected optical transport [9–12]
and experimentally realized by using waveguide arrays
[13]. A different structure was used to implement this
phenomenon in a silicon platform [14]. Recent progress
demonstrated topological phenomena in ultracold gases,
such as the measurement of the Zak phase [15]. However,
in typical cold atom experiments, accessing edge physics is
challenging, due to the smoothness of the magneto-optic
trap [16]. Accordingly, measuring topological properties
therein must be carried out by a complex procedure of
sweeping the wave function through the Brillouin zone
[17–21]. Similar ideas have been proposed for exciton-
polariton systems [22], and a direct measurement of the Zak
phase was suggested for a waveguide lattice [23].
Concurrently, notions of topological physics were intro-

duced also in dissipative non-Hermitian systems [24–29].
Under appropriate conditions, the history of the wave
function in a non-Hermitian system may encode topologi-
cal features of the system’s band structure. Such features
are reflected in robustly quantized values of certain
observables [24]. This discovery is important, first because
it identifies a methodology for unraveling the topological
behavior of non-Hermitian systems. Second, it proposes a

way to study topological features by examining the history
of the bulk wave function, something that would otherwise
require complicated protocols [15,20] or probing edge
physics [5,13,30].
Here, we present the first experiment to probe the topo-

logical properties of a non-Hermitian system. We show that
its topological nature can be probed by bulk experiments.
We study an optical setup designed to realize the

idealized one-dimensional (1D) non-Hermitian dimer
model (NHDM) of [24]. The NHDM resembles the
Su-Schrieffer-Heeger (SSH) model of polyacetylene [31],
also called the dimer model, defined in terms of hopping
on a 1D lattice with alternating strong and weak bonds.
The SSH model features topologically distinct phases,
corresponding to two inequivalent dimerization patterns.
The NHDM contains an additional ingredient: particles can
be lost or absorbed at every second site.
Our experimental system is based on the model in

Ref. [24], originally conceived as a “quantum walk” in
energy space, where levels are by nature discrete. We map
this behavior to a continuous system: an array of coupled
waveguides. In continuous periodic systems, such as
crystalline materials, photonic crystals, waveguide arrays,
or superconducting circuits, deviations from the idealized
tight-binding description can be important. This is espe-
cially significant in non-Hermitian systems, where loss is
added into the model phenomenologically, representing
radiation-mode coupling. Furthermore, Hilbert space
dimensionality plays a crucial role in defining the topology
for the non-Hermitian system in Ref. [24], controlling the
prevalence of “dark states” which mark the topological
transition points. In particular, for a generic system withM
sites per unit cell, nontrivial winding can occur only in the
case where one site is lossy, while the remaining M − 1
sites are stable [32]. When more than one site per unit cell is
lossy, dark states (i.e., eigenstates that avoid all lossy sites)
become too rare to induce quantization. From this point of
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view, it is an open question as to how predictions of
Ref. [24] will hold in an experimental setting based on a
continuous variable implementation.
We implement the NHDM in a photonic setting, although

the concept is general.Our system is composed of an array of
evanescently coupledwaveguides [Fig. 1(a)]. The input facet
is sketched in Fig. 1(b), labeling the sublattices A and B and
cell index m [33]. The cell length is d, and the spacings
between A and B sublattices are d1 and d2, leading to a
dimerization Δd ¼ ðd1 − d2Þ=2. Coupled optical systems
are well suited to examining other non-Hermitian effects
(such as parity-time symmetric systems) with the refractive
index distribution as the real part of the potential and the gain
and loss parameter as the imaginary part [34]. By oscillating
everysecondwaveguide, radiation loss is introduced[35,36].
Such a waveguide mimics a temporally oscillating potential
well: oscillation introduces leakage to continuum modes.
These modes radiate, never to return, leading to loss of the
guided light. The notion of spatially oscillating waveguide
channels to induce bending losses yields highly tunable non-
Hermiticity, a technique that can be used broadly in other
systems.Thesmallwigglingischosentransverse to the lattice
plane to minimize the change of the distance between
adjacent waveguides. Thus, to a good approximation, the
coupling is time independent [35]. The full continuum
description of the propagation of light therein is given by
the paraxial approximation toMaxwell’s equations, which is
mathematically equivalent to the Schrödinger equation:

i∂zψðx;y;zÞ¼− 1

2k0
∇2ψðx;y;zÞ−k0Δnðx;y;zÞ

n0
ψðx;y;zÞ;

ð1Þ

where z represents the propagation distance along the
waveguide axis, k0 is the wave number of light in the
medium, ∇2 is in the transverse ðx; yÞ plane, Δnðx; y; zÞ is
the refractive index change profile of the waveguides, and

n0 represents the ambient refractive index. If Δnðx; y; zÞ is
real, then Eq. (1) is Hermitian (thus conservative); if the
material has a spatially uniform absorption coefficient
(always present but very small here), this causes an overall
decay of the wave function as a function of z (but when this
is factored out the propagation is still Hermitian). Desired
loss is implemented by the aforementioned waveguide
wiggling. Our system is equivalent to an open quantum
system, which is also represented by a non-Hermitian
model [37,38]. Solving Eq. (1) numerically in the con-
tinuum simulations, we use absorbing boundary conditions,
forcing our system to be non-Hermitian [39].
The single-mode waveguides can be modeled by using

tight-binding equations. This yields a discrete Schrödinger
equation [43,44], with the distance along the waveguide
axis, z, acting in place of time t:

i∂z

�
am
bm

�
¼ −

�
c1bm þ c2bm−1

c1am þ c2amþ1 − iγ bm
2

�
; ð2Þ

where c1 and c2 are coupling (hopping) constants between
waveguides, and γ is the loss rate. The couplings are tuned
by varying the spacing, and γ is tuned by varying the
amplitude and period of the oscillation. In the basis of
periodic Bloch functions, the Hamiltonian is given by

HðkÞ ¼ −
�

0 c1 þ c2eik

c2e−ik þ c1 −i γ
2

�
; ð3Þ

where k is the Bloch wave number. For γ ¼ 0, this is
precisely the SSH model. Therein, for any k, the Bloch
eigenstates (viewed as a pseudospin) lie on the equator of
the Bloch sphere. The topological number is the “winding
number”: the number of loops made by a Bloch state
around the equator of the Bloch sphere, as k passes through
the Brillouin zone [15,45–47]. Here, the winding number w
yields jwj ¼ 0 or 1, in the cases c1 > c2 and c1 < c2,
respectively; a nonzero winding number is referred to as
being “topologically nontrivial.” Here, the winding number
is equivalent to the Zak phase [45,47], up to a factor of π.
The bulk-edge correspondence principle [48] states that, at
an interface between a topologically trivial and nontrivial
crystal, a localized state forms. Typically, the topological
nature of a system is probed via these edge states
[5,13,30,49].
With nonzero loss, the NHDM presents a different

paradigm of topology [24]. Here, a winding number is
associated with the number of times the Bloch eigenstates
encircle the polar axis of the Bloch sphere, independent of
the presence of symmetry in the A and B sublattice
potentials. The σz axis is special due to the existence of
a nondecaying dark state that lives entirely on the A
sublattice, at the north pole of the Bloch sphere. Note that
both eigenstates of the Bloch Hamiltonian must avoid the
north pole (i.e., the dark state) for all values of k. Both the

FIG. 1 (color online). (a) Schematic diagram of the waveguide
array. The B sites oscillate in the vertical direction with a period
Z ¼ 1 mm, causing bending or radiation losses to continuum
modes. (b) Sketch of the input facet labeling the unit cell index m
and the sublattices A (nonlossy) and B (lossy).
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SSH and NHDM feature a transition of the topological
number at exactly c1 ¼ c2; in the case where A and B
sublattice potentials are equal, the winding number of the
NHDM coincides with that of the SSH model. Remarkably,
within the NHDM, the expected mean displacement hΔmi
achieved by a particle initialized on the nondecaying
sublattice, is topologically quantized, with its value given
by the winding number.
Under inversion, the waveguide structure with a given

dimerization Δd maps to the structure with dimerization
−Δd. This raises the question of how these two structures
can have different winding numbers while having the same
bulk structure. Here, symmetry is broken by the choice of
the unit cell labeling—not by the edges. Thus, phases here
cannot be labeled as topologically trivial (w ¼ 0) or non-
trivial (w ≠ 0); what is important is only the distinction
between phases: their differing winding numbers (see [15]).
Therefore, the transition is a probe of the difference in the
winding numbers in the phases of the NHDM.
We first examine the case where light is injected (at

z ¼ 0) with unit amplitude into the (nonlossy) A site of unit
cell m ¼ 0. The mean displacement is [24]

hΔmi ¼ γ
X
m

m
Z∞

0

dzjψ ðBÞ
m ðzÞj2; ð4Þ

where ψ ðBÞ
m ðzÞ is the amplitude on site B of unit cell m at

distance z. hΔmi depends upon the wave function’s history.
As shown in Ref. [24], hΔmi equals the winding number if
the A site is excited. Figure 2 shows hΔmi as a function
of the dimerization, obtained from tight-binding simula-
tions for a large system size and long propagation length.
The coupling function used in the simulations is cðdÞ ¼
27.3=cm · eð−0.195=μmÞ·d (the decay factor is sufficiently
large to neglect next-nearest-neighbor coupling). This
dependence was obtained from light propagation experi-
ments in two waveguides acting as a directional coupler.
The two curves (blue and red) correspond to initialization
on the A and B sublattices, respectively.

The transition from hΔmi ¼ 0 to hΔmi ¼ 1 at Δd ¼ 0
is shown by the blue curve in Fig. 2, coinciding with the
change of the winding number: the switching between
different topological phases. When light is launched at a
lossy B site, hΔmi is robustly quantized to zero, as seen in
simulations (red curve) and hence, no transition takes place,
and hΔmi remains zero for all Δd (see Sec. I in Ref. [39]).
The z evolution is plotted in the insets in Fig. 2 for Δd ¼ 0
(i.e., at the transition) and Δd ¼ 2.8 μm (away from it).
Interestingly, despite the loss, the lifetime of the wave
function diverges atΔd ¼ 0 (Fig. 2, right inset); however, it
is finite at Δd ¼ 2.8 μm (Fig. 2, left inset). This results
from the dark state: a nondecaying eigenstate residing only
on nonlossy sites [24,35]. It leads to a diverging variance
hΔm2i, which accompanies the jump in hΔmi and signals
the topological transition.
We fabricate such lattices in fused silica glass by using

femtosecond direct laser writing [50] with parameters
described in Refs. [35,36]. Each lattice consists of 34
waveguides and is 10 cm long. The waveguides are
arranged with alternating distances d1 and d2 (Fig. 1).
To introduce loss, every second waveguide is sinusoidally
oscillated as a function of z. The wiggling is transverse to
the plane of the waveguides, with oscillation amplitude
A ¼ 3 μm and period Z ¼ 1 mm, resulting in a loss factor
γ ≈ 0.53=cm. Every waveguide also contains a small
intrinsic loss of γ ≈ 0.08=cm, which can be factored out
as it is identical in every site. These values were measured
in isolated waveguides and fabricated with the same
parameters. We implement 11 waveguide lattices with a
lattice constant d ¼ 36 μm, with different distances d1 and
d2, where d1 þ d2 ¼ d. In the most dimerized case, we use
jΔdj ¼ 4 μm, which is decreased in each subsequent array
in steps of 0.4 μm to Δd ¼ 0, corresponding to equally
spaced waveguides. We excite a single waveguide in the
central unit cell (m ¼ 0) with laser light at λ ¼ 633 nm and
employ fluorescence microscopy [50,51] to observe the
wave function intensity as a function of z. Hence, we
compute hΔmi as defined in Eq. (4).
In Fig. 3, we plot the measured hΔmi as a function of

Δd. We use the fact that two systems with the same jΔdj are
realized in the same sample, which just has to be inverted
during data analysis. One can see a clear transition from
hΔmi ∼ 0 to hΔmi ∼ 0.82 when a straight waveguide (A
sublattice) in the central cell of the array (m ¼ 0) is excited.
In the case where the B site is excited, hΔmi shows small
fluctuations around zero, coinciding with predictions in
Fig. 2 (also, see Sec. I in Ref. [39]). Two examples of the
fluorescence images for Δd ¼ 0 and Δd ¼ 2.8 μm are
shown in the insets in Fig. 3. Background noise is
subtracted; however, there is inevitably some residual
noise. Figure 3 shows the experimental results along with
both continuum simulations and tight-binding simulations,
which differ from those in Fig. 2 since here we use the
parameters of the experimental system.

FIG. 2 (color online). Mean displacement hΔmi plotted as a
function of Δd. The blue curve depicts the result when light is
input in the A site, and the red curve corresponds to input at the B
site. The insets show the absolute value of the wave function as a
function of z (ascending) in the waveguide array (note the
presence of the long-lived dark state on the right inset).
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In our experiment, we see the topological transition in
our non-Hermitian system via a bulk measurement: the first
observation of a dissipative topological transition. Of
course, as for any continuous physical system, the tran-
sition is not as sharp as that predicted by the idealized tight-
binding NHDM. The smoothness of the transition in the
experiment and simulations (Fig. 3) can be attributed to (i)
deviations from adiabaticity as the waveguides undergo
oscillation to induce loss (indeed, continuum simulations
show that propagation is not perfectly adiabatic at the 1 mm
period), (ii) neglect of the overlap term between neighbor-
ing waveguide modes in the tight-binding approximation,
(iii) the small overall loss being also present in the A-sites,
and (iv) the fact that decay causes our experimental signal
to get lost in noise for sufficiently large z—which effec-
tively limits the length to which we can propagate. The last
two points account for the deviation between the tight-
binding simulations in Figs. 2 and 3. The differences
between experiments and simulations may arise due to
background radiation noise and deviations from a linear
relationship between fluorescence and the light intensity.
They do not arise from next-nearest-neighbor hopping, as
this has no effect on the transition (unless the second-
neighbor hopping becomes larger than the nearest-neighbor
hopping—unphysical here). That said, the results match
simulations and definitively show the transition. They also
show no transition at all when the system is excited at the B
site (as predicted). The agreement between theory, simu-
lation, and experiment shows that the tight-binding model
is a good approximation to the continuous problem and
yields an accurate phenomenological description of the
ultimately continuous system.
It is important to demonstrate the relevant topological

edge physics here. When a system undergoes a transition
from a topologically trivial to a nontrivial phase, edge states
must emerge. We demonstrate this by launching light into

the waveguides at the ends of our lattice. These experi-
ments, shown in Sec. II in Ref. [39], clearly show confined
edge states associated with a nonzero winding number.
Monitoring the topological transition through the edge
states confirms the findings we showed above extracted
from bulk measurements.
Another prediction of Ref. [24] is that the lifetime of a

walker in the bulk should diverge at the transition, here
corresponding to Δd ¼ 0, monotonically decreasing for
increasing jΔdj. To investigate this, we plot the integrated
power in the final quarter of the sample as a function of Δd
(Fig. 4). We show only Δd > 0, as the inverted structures
used to realize negative values of Δd yield identical results.
Here, although we expect to have a maximum at the
transition point (Δd ¼ 0), we do not expect this quantity
to diverge, because we are only measuring integrated power
for a finite amount of propagation length z (indeed, true
divergence is not physical for a finite sample length).
Clearly, the remaining power reaches a maximum at the
transition point, indicating that, for small dimerizations, the
wave packet has the longest lifetime.
In conclusion, we have presented the first experimental

observation of a topological transition in a non-Hermitian
system; we do this by using bulk measurements. Our
experiments show that the features of the idealized tight-
bindingmodel ofRef. [24] carry over to experiments. Indeed,
loss is an inherent feature of many systems that may exhibit
topological effects (such as coupled quantum dots [24],
optical lattices [15], and driven-dissipative exciton-polariton
condensates [52]). This non-Hermiticity may act as a
surprising probe of their potentially rich topological phases.
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propagation through the array, as a function of Δd.

PRL 115, 040402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JULY 2015

040402-4



Science Foundation. M. R. acknowledges support from the
Villum Foundation and the People Programme (Marie
Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA
Grant agreement No. PIIF-GA-2013-627838.
Julia M. Zeuner and Mikael C. Rechtsman contributed

equally to this work.

*julia.zeuner@uni‑jena.de
†mcrworld@psu.edu

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[2] K. v. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45,
494 (1980).

[3] C. L.Kane and E. J.Mele, Phys. Rev. Lett. 95, 226801 (2005).
[4] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science

314, 1757 (2006).
[5] M. König, S. Wiedmann, C. Brune, A. Roth, H. Buhmann,

L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, Science 318,
766 (2007).

[6] F. D. M. Haldane and S. Raghu, Phys. Rev. Lett. 100,
013904 (2008).

[7] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic,
Phys. Rev. Lett. 100, 013905 (2008).

[8] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacic,
Nature (London) 461, 772 (2009).

[9] R. O. Umucalılar and I. Carusotto, Phys. Rev. A 84, 043804
(2011).

[10] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor,
Nat. Phys. 7, 907 (2011).

[11] K. Fang, Z. Yu, and S. Fan, Nat. Photonics 6, 782 (2012).
[12] A. B. Khanikaev, S. H. Mousavi, W.-K. Tse, M. Kargarian,

A. H. MacDonald, and G. Shvets, Nat. Mater. 12, 233
(2013).

[13] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.
Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature (London) 496, 196 (2013).

[14] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor,
Nat. Photonics 7, 1001 (2013).

[15] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T.
Kitagawa, E. Demler, and I. Bloch, Nat. Phys. 9, 795 (2013).

[16] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith,
and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).

[17] D. A. Abanin, T. Kitagawa, I. Bloch, and E. Demler, Phys.
Rev. Lett. 110, 165304 (2013).

[18] X.-J. Liu, K. T. Law, T. K. Ng, and P. A. Lee, Phys. Rev.
Lett. 111, 120402 (2013).

[19] A. Dauphin and N. Goldman, Phys. Rev. Lett. 111, 135302
(2013).

[20] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T.
Uehlinger, D. Greif, and T. Esslinger, Nature (London)
515, 237 (2014).

[21] M. Aidelsburger et al., Nat. Phys. (to be published).
[22] T. Ozawa and I. Carusotto, Phys. Rev. Lett. 112, 133902

(2014).
[23] S. Longhi, Opt. Lett. 38, 3716 (2013).
[24] M. S. Rudner and L. S. Levitov, Phys. Rev. Lett. 102,

065703 (2009).

[25] S. Diehl, E. Rico, M. A. Baranov, and P. Zoller, Nat. Phys. 7,
971 (2011).

[26] C.-E. Bardyn, M. A. Baranov, C. V. Kraus, E. Rico, A.
İmamoğlu, P. Zoller, and S. Diehl, New J. Phys. 15, 085001
(2013).

[27] K. Esaki,, M. Sato, K. Hasebe, and M. Kohmoto, Phys. Rev.
B 84, 205128 (2011).

[28] H. Schomerus, Opt. Lett. 38, 1912 (2013).
[29] C. Yuce, Phys. Lett. A 379, 1213 (2015).
[30] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava,

and M. Z. Hasan, Nature (London) 452, 970 (2008).
[31] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett.

42, 1698 (1979).
[32] M. Rudner et al. (to be published).
[33] N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen,

Opt. Lett. 34, 1633 (2009).
[34] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and

Z. H. Musslimani, Opt. Lett. 32, 2632 (2007).
[35] T. Eichelkraut, R. Heilmann, S. Weimann, S. Stützer,

F. Dreisow, D. N. Christodoulides, S. Nolte, and A. Szameit,
Nat. Commun. 4, 2533 (2013).

[36] T. Eichelkraut, S. Weimann, S. Stützer, S. Nolte, and
A. Szameit, Opt. Lett. 39, 6831 (2014).

[37] L. D. Landau and E. M. Lifshits, Quantum Mechanics:
Non-relativistic Theory (Butterworth- Heinemann, London,
1977).

[38] N. Moiseyev, Non-Hermitian Quantum Mechanics
(Cambridge University Press, Cambridge, England, 2011).

[39] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.115.040402 for more
detailed information about continuum simulations, injection
of light into B-site, and the observation of edge behaviour,
which includes Refs. [40–42].

[40] S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
[41] K. Kawano and T. Kitoh, Introduction to Optical Wave-

guide Analysis: Solving Maxwell’s Equation and the Schrö-
dinger Equation (Wiley, New York, 2001).

[42] R. Kosloff and D. Kosloff, J. Comput. Phys. 63, 363 (1986).
[43] F.Lederer,G. I.Stegeman,D. N.Christodoulides,G.Assanto,

M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008).
[44] A. L. Jones, J. Opt. Soc. Am. 55, 261 (1965).
[45] B. A. Bernevig and T. L. Hughes, Topological Insulators

and Topological Superconductors (Princeton University
Press, Princeton, NJ, 2013).

[46] P. Delplace, D. Ullmo, and G. Montambaux, Phys. Rev. B
84, 195452 (2011).

[47] J. Zak, Phys. Rev. Lett. 62, 2747 (1989).
[48] S. Ryu and Y. Hatsugai, Physica E (Amsterdam) 22, 679

(2004).
[49] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E.

Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G.
White, Nat. Commun. 3, 882 (2012).

[50] A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[51] A. Szameit, F. Dreisow, H. Hartung, S. Nolte, A.

Tünnermann, and F. Lederer, Appl. Phys. Lett. 90,
241113 (2007).

[52] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D.
Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J.
Bloch, and A. Amo, Phys. Rev. Lett. 112, 116402 (2014).

PRL 115, 040402 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
24 JULY 2015

040402-5

http://dx.doi.org/10.1103/PhysRevLett.49.405
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.45.494
http://dx.doi.org/10.1103/PhysRevLett.95.226801
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1133734
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1126/science.1148047
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013904
http://dx.doi.org/10.1103/PhysRevLett.100.013905
http://dx.doi.org/10.1038/nature08293
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1103/PhysRevA.84.043804
http://dx.doi.org/10.1038/nphys2063
http://dx.doi.org/10.1038/nphoton.2012.236
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nmat3520
http://dx.doi.org/10.1038/nature12066
http://dx.doi.org/10.1038/nphoton.2013.274
http://dx.doi.org/10.1038/nphys2790
http://dx.doi.org/10.1103/PhysRevLett.110.200406
http://dx.doi.org/10.1103/PhysRevLett.110.165304
http://dx.doi.org/10.1103/PhysRevLett.110.165304
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/PhysRevLett.111.120402
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1103/PhysRevLett.111.135302
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1038/nature13915
http://dx.doi.org/10.1103/PhysRevLett.112.133902
http://dx.doi.org/10.1103/PhysRevLett.112.133902
http://dx.doi.org/10.1364/OL.38.003716
http://dx.doi.org/10.1103/PhysRevLett.102.065703
http://dx.doi.org/10.1103/PhysRevLett.102.065703
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1038/nphys2106
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1088/1367-2630/15/8/085001
http://dx.doi.org/10.1103/PhysRevB.84.205128
http://dx.doi.org/10.1103/PhysRevB.84.205128
http://dx.doi.org/10.1364/OL.38.001912
http://dx.doi.org/10.1016/j.physleta.2015.02.011
http://dx.doi.org/10.1038/nature06843
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1103/PhysRevLett.42.1698
http://dx.doi.org/10.1364/OL.34.001633
http://dx.doi.org/10.1364/OL.32.002632
http://dx.doi.org/10.1038/ncomms3533
http://dx.doi.org/10.1364/OL.39.006831
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.040402
http://dx.doi.org/10.1103/PhysRevLett.89.077002
http://dx.doi.org/10.1016/0021-9991(86)90199-3
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1364/JOSA.55.000261
http://dx.doi.org/10.1103/PhysRevB.84.195452
http://dx.doi.org/10.1103/PhysRevB.84.195452
http://dx.doi.org/10.1103/PhysRevLett.62.2747
http://dx.doi.org/10.1016/j.physe.2003.12.098
http://dx.doi.org/10.1016/j.physe.2003.12.098
http://dx.doi.org/10.1038/ncomms1872
http://dx.doi.org/10.1088/0953-4075/43/16/163001
http://dx.doi.org/10.1063/1.2735953
http://dx.doi.org/10.1063/1.2735953
http://dx.doi.org/10.1103/PhysRevLett.112.116402

