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Particle-particle interactions are of paramount importance in every multibody system as they determine
the collective behavior and coupling strength. Many well-known interactions such as electrostatic, van der
Waals, or screened Coulomb interactions, decay exponentially or with negative powers of the particle
spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as
1=r in bulk, and are assumed to decay in small channels. Such interactions are ubiquitous in biological and
technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic
channels and study their coupling through hydrodynamic interactions. Our experiments show that the
hydrodynamic particle-particle interactions are distance independent in these channels. This finding is of
fundamental importance for the interpretation of experiments where dense mixtures of particles or
molecules diffuse through finite length, water-filled channels or pore networks.
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Molecular diffusion inside channels and pores is relevant
for a wide range of phenomena in natural systems [1] as well
as technological applications [2,3]. For example, biological
channels that transport antibiotics are under intense inves-
tigation due to their importance for drug transport [4].
Diffusing molecules inside protein channels are closely
confined, leading to single-file diffusion with hydrodynamic
interactions playing a role even at these nanometer length
scales [5,6]. Transport through protein channels can be
mimicked by colloidal particles and microfluidic chips [7]
that confine particles to 1D diffusion [8]. Such particles
undergo randomwalks in one dimension driven byBrownian
motion, where the corresponding diffusion coefficient criti-
cally depends on the geometry of the confinement [3,9].
Loosely speaking, these Brownian particles receive

momentum impulses from thermal fluctuations of the solvent
molecules [10], and their resulting motion displaces the
liquid around it [5,11]. This creates a flow field that mediates
a long-range hydrodynamic interaction between the particles
[12]. The strength of this interaction is proportional to the
flow velocity which decays with distance as 1=r, where r is
the separation between two unconstrained particles in three
dimensions (3D) [13]. Introducing a geometrical confine-
ment modifies the flow field that changes the decay rate. For
example, the interaction between particles constrained by
two parallel plates (2D) decays faster at a rate of∼1=r2 [14].
In narrow channels the hydrodynamic interactions were

previously measured to rapidly decay with particle separa-
tion [15–17]. Indeed, the steady flow induced by particle
motion in a channel decays exponentially with r=2R, where
2R is the channel width [5,11,18,19]. Consequently, the
particle-particle interaction strength is expected to also decay
exponentially with their separation [15,18]. However, recent
theoretical investigation suggests that interactions could

have a longer spacial extent and a slower decay rate than
previously thought [20]. Furthermore, previous experiments
did not capture far field hydrodynamics because they used
microfluidic chips with a groove geometry for mimicking
channels [8,15–17]. Sedimentation kept the particles from
escaping the microfluidic groove, but the liquid had no such
constraint. The lack of controlled experiments in 1D confine-
ment leaves many unanswered questions about the magni-
tude and spacial extent of hydrodynamic interactions inside
narrow channels [8,21].
In this Letter, we present the first measurement of

the interactions between two Brownian particles inside a
finite narrow channel, that confines both the particles and
the liquid. Figure 1 illustrates our experiments, where the
“closed” channel, shown on the left, has only one end
connected to a bulk reservoir, while the “open” channel,
shown on the right, has both ends connected. Here we will
demonstrate a fundamental difference between diffusion in
open channels and in closed channels [11,15,18].
The experiments are realized using microfluidic lab-on-a-

chip devices because they allow for direct imaging of particle
motion. Inside the chip two large reservoirs are separated by a
membrane containing closed [Fig. 2(a)] and open channels
[Fig. 2(b)]. All channels are 5–17 μm long and have
semielliptical cross sections with a height and width of
approximately 800 nm that closely confine spherical par-
ticles of diameter 2a ¼ 505� 8 nm.The resulting particle to
channel size ratio is a=R ≈ 0.6, ensuring particles always
move in single file. Two additional large connections are
positioned ∼200 μm away from the narrow channels
allowing pressure equalization between the two reservoirs.
For the fabrication of the chips, we use focused ion beam,
photolithography, and replica molding of polydimethylsi-
loxane (PDMS) [22]. Crucially, the PDMS chips are then
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oxygen plasma bonded onto a glass slide which provides
a bottom wall confinement for the channels. Subsequently,
we fill the chip with the polystyrene colloidal particles
(Polysciences Inc.) dispersed in a 5 mM KCl salt solution
that limits electrostatic interactions to a few nanometers.
An assembled chip is mounted onto an inverted, custom-

built optical microscope with a high numerical aperture
oil-immersion objective (×100; NA 1.4; UPLSAPO).
Using holographic optical tweezers [23–25] we position
two particles inside the channel, and then turn off the laser
trapping which releases the particles and allows them to
diffuse freely. Their motion is recorded using a CMOS
camera (DMK-31BF03, Imaging Source) at a rate of 30
frames per second, until one particle escapes the channel.
Afterwards, the particle trajectories are extracted from
the images using standard image analysis techniques [26].
See Supplemental Material, videos S1 and S2 [27].
For data analysis, we divide the trajectories into dis-

placement steps between consecutive frames: Δx1 and Δx2
denote the displacements of the first particle (one on the
left) and the second particle (one on the right), respectively.
The two-particle interaction strength is expected to be a
function of their separation, and therefore, we group the
pairs of displacements according to distance between the
centers of the particles.
For the closed channel, Fig. 2(c) shows the displace-

ments of the second particle (Δx2) as a function of
displacement of the first particle (Δx1). The distribution
is circular with points distributed equally in each quadrant,
suggesting that the two particles move independently from
each other. This is expected for a large particle separation of
10a [15,18]. In contrast, the distribution for the open
channel, shown in Fig. 2(d), is elliptical with the major
axis along y ¼ x and ellipticity of 0.75. This implies that
the two particles move in the same direction more fre-
quently than in opposite directions, suggesting the presence
of long-ranged interaction between the particles.
We quantify the interaction strength using the Pearson

product-moment correlation coefficient defined as [31]:

ρ ¼ covðΔx1;Δx2Þ=σðΔx1ÞσðΔx2Þ, where cov is the
covariance, and σ is the standard deviation. The value
ρ ¼ 0 indicates independent particle motion and ρ ¼ 1
corresponds to fully correlated motion.
Figures 2(e) and 2(f) show the correlation coefficients as

a function of particle separation. Evidently, the correlation
is stronger and has a longer range in the open channel.
A detailed examination of the closed channel results shows
a high correlation when particles are close to one another
that exponentially decays to zero in a separation of ∼4a,
as expected. Therefore, we fit a phenomenological model,
y ¼ A expð−x=BÞ þ C, that captures the decay rate and
has an additional offset parameter. The fit yields
B ¼ 0.15� .02 μm, C¼0.005�.004. We have introduced
the offset to characterize the novel behavior observed in
the open channel. As evident from the data, the correlation
coefficient exhibits the same initial exponential decay,
but in stark contrast, it asymptotes to a constant offset.
This finite correlation coefficient is captured by the fit to
the phenomenological model, yielding B¼0.14�.02μm,

FIG. 1 (color online). Trajectories of two particles undergoing
Brownian motion in closed and open channels. The trajectories
are visibly uncorrelated in the closed channel, suggesting the
particles move independently. In the open channel the trajectories
resemble each other, which leads to strong motion correlation.
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FIG. 2 (color online). Comparison between closed channel (left
column) and open channel (right column) experiments. The top
row (a),(b) shows bright field images of microfluidic channels
containing two colloidal particles. Scale bars indicate 2 μm. The
middle row (c),(d) shows displacements of the second particle
(ŷ axis) as a function of displacement of the first particle (x̂ axis).
Each distribution contains 1000 displacement pairs with an initial
particle separation of approximately 2.5 μm. The overlaid lines
indicate contours for σ and 2σ from a 2D normal-distribution fit.
Insets illustrate the direction of motion for each quadrant. The
bottom row (e),(f) shows the correlation coefficients versus
the separation between the two particles. The solid lines indicate
the fits to the phenomenological model. The two-particle motion
is strongly correlated in the open channel, suggesting a presence
of long-ranged nondecaying interaction.
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C ¼ 0.419� .005. This constant, nondecaying component
is not expected. Furthermore, the correlation persists even at
the largest measured distances, suggesting that the two
particles interact when both are inside the open channel.
To the best of our knowledge, this is the first observation of
such distance-independent interactions between Brownian
particles.
We further investigate the effect of the channel length on

the particle-particle interaction strength. Figure 3 shows the
correlation coefficients for open channels of lengths L ¼ 5;
10, and 17 μm. The data clearly indicate that the interaction
strength decreases with L. In the longest channel, shown
as circles, we observe particles interacting at separations of
more than 40a. This is the largest relative distance measured
between interacting Brownian particles, even exceeding
the ∼20a separation measured in bulk [13,32]. This is a
surprising result because the geometric confinement typi-
cally reduces the maximum interaction distance [11,15,32].
Based on our observations we propose a hypothesis for

the distance-independent interaction mechanism, that is
schematically illustrated in the inset of Fig. 3. Suppose the
first particle, shown on the left, moves to the right due to a
thermal momentum impulse. At steady state its motion
induces a flow that is constrained by the channel geometry
to flow either around the particle or along the channel.
Importantly, the latter flow has been previously neglected
[5,11,15,18] because the studies considered infinitely long
channels, in which the finite pressure exerted by the
moving particle cannot displace an infinite liquid column.
In contrast, we argue that for finite open channels, flows
extend throughout the whole channel. Consequently, the
induced flow along the channel has a constant mean flow
velocity that is proportional to the driving force, i.e., the
first particle’s velocity [11,33]. This flow encounters the
second particle, shown on the right, and exerts a viscous

drag force on it. The magnitude of this force is a function of
flow velocity [34] and thus also a function of the first
particle’s velocity, but is independent of the particle posi-
tions. The opposite case of the second particle moving can
be inferred by symmetry, and the final interaction is a
combination of the two cases. This gives rise to the particle-
particle interaction that we observed with our correlation
coefficient measurements and also explains why the value is
distance-independent in open channels. In a limit where the
particle size matches the channel, this problem resembles
two pistons in a pipe and the trajectories would be perfectly
correlated [12]. On the contrary, in the closed channels, the
dead end blocks the flow along the channel, thus eliminating
the nondecaying hydrodynamic interaction.
We now use this hypothesis to construct an analytical

model that sheds light on the physics of the interaction. The
model focuses on physical scalings and omits detailed
numerical prefactors from the presentation. Our goal is to
estimate the typical mean flow velocity in the channel
resulting from the motion of one particle.
Consider a spherical particle of diameter 2a located in

the center of an open cylindrical channel of radius R and
length L. We assume that the particle moves instantane-
ously to the right with velocity U. The fluid displaced by
the particle must either be pushed along the channel to the
right channel end, with more fluid drawn in at the left, or
leak from right to left through the thin gap between the
particle and the channel wall. The pressure increase across
the sphere, Δp, is proportional to the flow rate in the
channel, Q, according to Poiseuille law

Δp ∼
μQL
R4

; ð1Þ
where μ is the dynamic viscosity. We neglect any hydro-
dynamic resistance due to the recirculation from the exit of
the channel to the entrance, equivalent to imposing a periodic
boundary condition. Mass conservation around the moving
sphere (in the frame moving with the sphere) leads to

Q −UR2 ∼ Rq; ð2Þ
where q is the leakage flux through the thin gap between the
sphere and the channel. It is approximately given by
lubrication theory [35]

q ∼ −Uh −
Δph3

μl0
; ð3Þ

where h≡ R − a is the minimum gap width, and l0 ∼
ðahÞ1=2 is the characteristic lubrication length scale.
Combining these equations and taking the limit h ≪ R,
we obtain the flow rate

Q ∼ UR2

�
R3a1=2

R3a1=2 þ Lh5=2

�
: ð4Þ

Combining with the mean flow in the channel,
hui ∼Q=R2, we get the final expression

hui
U

∼
R3a

R3aþ Lh5=2a1=2
· ð5Þ
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FIG. 3 (color online). Correlation coefficients for two interact-
ing particles for different channel lengths. The three curves
correspond to open channels with different lengths, from top to
bottom: 5, 10, 17 μm. The solid lines show the fit to a model
y ¼ A expð−x=BÞ þ C, where the offset coefficients were (from
top to bottom): C ¼ 0.420� .006; 0.250� .005; 0.101� .004.
Evidently, the long-ranged two-particle correlation coefficient
decreases with the channel length. Inset illustrates the proposed
model for long-ranged hydrodynamic interaction.
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Our result shows that the mean flow in the channel is
nonzero, but a function of the channel dimensions R and L.
Importantly, our model reproduces the observed decrease
with the channel length: scaling with 1=L. The long
channel limit (L → ∞) gives no external flows (Q ¼ 0)
equivalent to the closed channel case.
In order to quantitatively capture the experimental

results, we employ numerical simulations. Using finite
element analysis software (COMSOL MULTIPHYSICS v4.4)
[9] we solve the Stokes equations for two spherical particles
inside a cylindrical channel with a diameter chosen such
that the areas match the experimental parameters. Periodic
boundary conditions are set on the ends while all other
surfaces were set to no-slip boundary conditions. We apply
an instantaneous velocity on one particle and calculate the
resulting drag forces on both particles. A velocity inde-
pendent measure of these forces is known as a friction
matrix (ζ) ([33], p. 226). For the two particle system in one
dimension it is a 2 × 2 symmetric matrix, where the
diagonal terms (ζ1;1; ζ2;2) describe hydrodynamic drag
experienced by the moving particles (first; second), and
the off-diagonal elements (ζ1;2 ¼ ζ2;1) correspond to a
force exerted by the moving particle on the other particle.
The friction matrix values are computed directly from the
numerical simulation. In addition, the friction matrix can be
obtained from the experiments using a diffusivity matrix,
D ¼ kBTζ−1 [33], with components Di;i ¼ hΔx2i i=2Δt and
D1;2 ¼ D2;1 ¼ hΔx1Δx2i=2Δt [36]. This allows us to
compare the hydrodynamic interactions predicted by our
simulation with the measured data.
Figures 4(a) and 4(b) illustrate the typical flow patterns

computed with our simulation. Notice that the flow in the
closed channel curls around the particle and does not
extend far into the channel. This contrasts with the open
channel, where the flow around the particle is weaker and
there is a Poiseuille flow along the whole channel length.
This moving fluid column exerts a force on the second
particle that gives rise to the nondecaying interaction.
Figures 4(c) and 4(d) show a quantitative comparison
between the numerical simulation and experimental data,
where the solid lines indicate the simulation results and the
points indicate the experimental values. The friction with
the channel walls is the same for both particles, leading
to the overlapping curves (ζ1;1 and ζ2;2). Meanwhile,

the interaction force (ζ1;2) asymptotes to a nonzero value
for the open channel only, similar to the correlation
coefficient that was reported above. At small separations
the discrepancy between simulation and experiment is likely
caused by electrostatics and finite frame rate. Meanwhile,
at large separations the values compare very well, with the
largest discrepancy below 20%. This is very good agreement
given the approximations made about channel shape
and width.
The agreement between the numerical simulation and the

experimental data suggest that the proposed hypothesis
captures the physics of nondecaying interactions between
the Brownian particles. Crucially, this interaction requires
flow through the ends of the channel, which is attained by
keeping the two reservoirs at equal pressures. In our experi-
ments, the pressure equalizes via liquid recirculation through
the secondary large channels placed far away from the
narrow channel. In biological cells, this can happen through
the membrane or through dedicated water transport protein
channels known as aquaporins [1]. In porous materials, the
pressure can equalize throughother interlinking channels [2].
Our observations have far-reaching implications for

diffusion processes inside channels. One of the predictions
from our model is that the viscous drag on particles is
smaller than the theory expects for narrow channels
(Fig. S5). We therefore performed an additional experiment
that measured the diffusion coefficient of a single particle
inside an L ¼ 10 μm open channel (method [9]). The
measured diffusion coefficient is indeed 40% higher than
expected [5,11]: Dx=D0 ¼ 0.126� .006, where D0 is the
diffusion coefficient in the bulk (Fig. S6). This potentially
explains the experimental discrepancies noted in previous
studies for channels with similar dimensions [9,37,38].
Because the diffusion coefficient is important for predicting
transport rates, our results directly impact channel transport
models [39]. Moreover, the long-ranged interaction
between particles should lead to a cooperative behavior
that could enhance transport across channels. Also, since
the interactions are not limited to two particles, they should
persist for channels filled with three or even more particles.
This makes our results relevant for polymers in confine-
ment because the monomers can interact nonlocally [40],

FIG. 4 (color online). Top row illus-
trates flows inside the (a) closed and (b)
open channel obtained from the simula-
tions. The bottom row compares the
friction matrix values for the (c) closed
and (d) open channel. The points indicate
experimentally measured values, while
solid lines show the corresponding
simulation results obtained without any
fitting parameters. Values are normalized
with the bulk coefficient: ζ0 ¼ 6πμa.
Arrows highlight the non-zero interaction
term which agrees well with our simu-
lation results.
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and also for single-file systems because the particles
interact not only with the closest neighbors [8].
In conclusion, we utilized a highly controlled micro-

fluidic system coupled with holographic optical tweezers to
investigate the interaction of particles in confinement. Our
measurements prove that interactions extend over the full
channel length and have a constant strength that does not
decay with particle separation. We explain the coupling
mechanism using hydrodynamics with both a qualitative
analytical model and quantitative comparisons with the
numerical simulations. The excellent agreement between
the theory and experiments suggests that we fully under-
stand the properties of hydrodynamic particle interactions
in microfluidic channels. The nondecaying interaction
extending throughout the whole channel has important
implications for the modeling of transport through channels
as well as for the interpretation of experiments investigating
particles diffusing in close confinement.
All data accompanying this publication are directly

available within the publication.
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