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To adapt their behavior in changing environments, cells sense concentrations by binding external ligands
to their receptors. However, incorrect ligands may bind nonspecifically to receptors, and when their
concentration is large, this binding activity may interfere with the sensing of the ligand of interest. Here, I
derive analytically the physical limit to the accuracy of concentration sensing amid a large number of
interfering ligands. A scaling transition is found when the mean bound time of correct ligands is twice that
of incorrect ligands. I discuss how the physical bound can be approached by a cascade of receptor states
generalizing kinetic proofreading schemes.
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Because of their small sizes, biological systems typically
operate with only a few copies of the molecules they sense
and communicate with. In their pioneering work, Berg
and Purcell derived the fundamental bound that the noise
arising from these small numbers sets on the accuracy of
concentration sensing [1]. Experimental progress in the
characterization of single-cell variability [2] and sensing
precision [3] has fueled a renewed interest in small-number
noise and its implications for information processing [4–6].
General or refined bounds on sensing accuracy have been
recently derived for single receptors [7–9], and extended to
spatial [10–14] or temporal [15] gradient sensing, while the
metabolic cost and trade-offs of sensing accuracy have been
explored [16–25]. Much of this past work has assumed
perfect specificity between the biological receptors and
their cognate ligands. In realistic biological contexts, large
numbers of spurious ligands may bind receptors non-
specifically, interfering with the ligand of interest [26].
This is the case in the problem of antigen recognition by
T-cell receptors, where cells must react to a small number
of specific foreign peptides among a large number of
nonspecific self-peptides [27]. Biochemical network archi-
tectures based on kinetic proofreading [28,29] have been
shown to provide a solution to the discrimination problem,
and have been studied in depth theoretically [26,30–32].
However, no fundamental bound has been derived against
which to compare the performance of these solutions, save
for Ref. [33] where concepts of statistical decision theory
were used to derive the minimal decision time to detect
cognate ligands. In this Letter I derive the fundamental limit
on concentration sensing accuracy and ligand detection
error in the presence of a large number of spurious ligands.
The maximum likelihood estimate achieving the bound can
be implemented biologically by simple networks based on
push-pull reactions.
Consider a mixture of two ligands, only one of which the

biological system wishes to sense (Fig. 1). The ligand of
interest (hereafter referred to as the correct ligand) is

present in concentration c, while the interfering or spurious
ligand (called the incorrect ligand) is present in concen-
tration c0. The biological unit can sense ligands through N
identical receptors, which can be bound by either ligand
with a common rate k ¼ 4Da, where D is the molecule
diffusivity and a the effective receptor size. Receptors can
distinguish between the two molecules thanks to their
higher affinity to the correct ligand. Physically, this means
that the unbinding rate r of the correct ligand is smaller than
that of the incorrect ligand r0 > r.
The occupancy of each receptor,

p ¼ kcr−1 þ kc0r0−1

1þ kcr−1 þ kc0r0−1
; ð1Þ

depends on both concentrations, and cannot be used alone
to determine c. The interchangeability of the ratios c=r and
c0=r0 in this expression emphasizes the ambiguity between
many incorrect ligands and a few correct ones. To discern
these two effects, one must use the full temporal record of
occupancy of each receptor. The probability distribution for
the binding and unbinding events at all receptors during a
time interval T reads

P ¼ e−kctotTu

Yn
i¼1

ðkcre−rti þ kc0r0e−r0tiÞ; ð2Þ

with ctot ¼ cþ c0 is the total concentration of ligands, Tu is
the total unbound time accrued over all receptors, and
t1;…; tn the durations of the n binding events occurring at
all N receptors during T. The log-likelihod L ¼ lnP can
be rewritten as a sum of three independent contributions,
L ¼ L0 þ L1 þ L2, where L0 depends on neither c or c0,
and where L1 and L2 pertain to the unbound and bound
intervals, respectively,

L1ðctotÞ ¼ n ln ctot − kctotTu; ð3Þ

L2ðxÞ ¼
Xn
i¼1

ln ð1 − xþ xαeð1−αÞr0tiÞ; ð4Þ
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where x ¼ c=ctot is the fraction of correct ligands, and
α ¼ r=r0 < 1 is the binding constant ratio. As can be seen
in the respective dependencies ofL1 andL2 upon ctot and x,
unbound intervals are informative of the total concentra-
tion, while the bound intervals are informative of the
fractions of ligands.
The maximum likelihood estimate for the total concen-

tration is obtained by the condition ∂L1=∂ctot ¼ 0, which
gives c�tot ¼ kTu=n. The error made by this estimate is given
in the large time limit by the Cramér-Rao bound, which
sets the best possible performance of any estimator [34]:

hδc2toti ≈ −
�∂2L1

∂c2tot
�−1

¼ c2tot
n

≈
ctot

4Dað1 − pÞNT
; ð5Þ

with δctot ¼ c�tot − ctot. This result is that obtained in Ref. [8]
for a single ligand,where themaximum-likelihood errorwas
shown to be half as small as the classical Berg and Purcell
bound [1] based on the average receptor occupancy. The
reason for this difference is that the maximum likelihood
estimate is not affected by the noise due to the stochastic
nature of receptor unbinding, as evident in Eq. (3). In the
case of a mixture, the receptor occupancy Eq. (1) depends
on x as well as ctot, and does not even suffice to determine
the total concentration.
The fraction x of correct ligands can be estimated by

maximum likelihood as well, by solving

∂L2

∂x
����
x�
¼

Xn
i¼1

αeð1−αÞr0ti − 1

1 − x� þ x�αeð1−αÞr0ti
¼ 0: ð6Þ

The error can be estimated from the Cramér-Rao bound
(Appendix A.1, Supplemental Material [35]):

hδx2i ≈ −
�∂2L2

∂x2
�−1

≈
fðx; αÞ

n

with fðx; αÞ−1 ¼
Z þ∞

0

due−u
ðαeð1−αÞu − 1Þ2

1 − xþ xαeð1−αÞu
: ð7Þ

The total error in the concentration of the correct ligand
c ¼ xctot is then the sum of the (independent) errors in ctot
and x from Eqs. (5) and (7): hδc2i ≈ c2tot½x2 þ fðx; αÞ�=n.
It is interesting to consider the limit where the correct

ligands are rare, x ≪ 1, as in the case of immune recog-
nition. Two scaling regimes, illustrated in Fig. 2, are found
depending on the value of the ratio α between the two
binding constants:

fðx; αÞ ≈
(
gðαÞ α > 1=2;

hðαÞxβ; β ¼ 1 − α
1−α α < 1=2;

ð8Þ

with gðαÞ¼ð2α−1Þ=ð1−αÞ2 and hðαÞ¼ð1−αÞα−½1=ð1−αÞ�×
sin½πα=ð1−αÞ�=π, and 0 < β < 1. Since x2 ≪ fðx; αÞ, the
error in c reduces to

hδc2i ≈ gðαÞ ctot
4Dað1 − pÞNT

; α > 1=2;

hδc2i ≈ hðαÞ cβc1−βtot

4Dað1 − pÞNT
; α < 1=2: ð9Þ

In the hard discrimination regime (α > 1=2), incorrect
ligands dominate the error, which is governed by ctot as
in Eq. (5). The prefactor gðαÞ diverges at α ¼ 1, as expected

FIG. 1 (color online). Reading concentrations off trajectories of
receptor occupancies. Cognate (correct) and spurious (incorrect)
ligands may bind N receptors, typically presented on the cell
surface, with rate kc and kc0. The incorrect ligands are in excess,
c0 > c, but lead to shorter binding events, r0 > r. The information
the cell can theoretically use is contained in the time traces of
occupancy of all receptors (green curves). The maximum like-
lihood estimate fully exploits these traces to optimally infer the
input concentrations c and c0.

FIG. 2 (color online). Physical bound on concentration sensing
error. The fundamental bound on the relative error in the fraction
of correct ligands x ¼ c=ctot scales with the inverse of the number
of binding events n. Here the rescaled error fðx; αÞ ¼ nhδx2i
[Eq. (7)], is represented as a function of the binding constant ratio
α for various values of x. There are two distinct scaling regimes
[Eq. (8)]. For α > 1=2, the rescaled error depends weakly on x,
while for α < 1=2 it scales as xβ, with β ¼ 1 − α=ð1 − αÞ, as
illustrated in the inset for three example values of α.
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when the two ligands have the same binding constant
and are thus indistinguishable. By contrast, in the easy
discrimination regime (α < 1=2) the error is governed by a
weighted geometric mean between c and ctot. In the limit
of very small α, corresponding to clearly distinguish-
able ligands, the error is hδc2i ≈ c=½4Dað1 − pÞNT�—
precisely the error when no interfering ligand is present [8].
For x ¼ 0, the maximum-likelihood estimate may infer a
small x� ¼ δx > 0. However, the second derivative of the
likelihood diverges at x ¼ 0 for α < 1=2, indicating that the
Cramér-Rao bound (7) fails to give a correct estimate of this
error, which instead scales anomalously with the number
of events: δx ∼ nα−1, hence δc ∼ cαtot½4Dað1 − pÞNT�α−1
(Appendix A.2 [35]).
In many situations, it is more useful for the system to

determine the presence of the correct ligand rather than its
precise concentration, as in the recognition of foreign
pathogens by immune receptors. This decision can be
made optimally (in the Bayesian sense) by comparing
the likelihoods of the two competing hypotheses: presence
versus absence of the correct ligand at fraction x. The
presence of the correct ligand is detected when
ln½PðftigjxÞ=Pðftigj0Þ� ¼ L2ðxÞ > θ, where θ is an adjust-
able parameter controlling the balance between the false-
positive and false-negative error rates FP and FN. These
errors decay exponentially fast with large numbers n of
binding events, and can be estimated in that limit using a
saddle-point approximation (Appendix B1 [35]):

FP ≈
exp ½nϕðλÞ − λθ�
λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πnjϕ00ðλÞjp ; FN ≈

λ

1 − λ
eθFP; ð10Þ

where ϕðλÞ ¼ ln ðRþ∞
0 due−u½1 − xþ αxeð1−αÞu�λÞ, and

where λ satisfies the saddle-point condition θ ¼ nϕ0ðλÞ.
The receiver operating characteristics (ROC) giving the
dependency between FP and FN can thus be estimated
parametrically by varying λ. This saddle-point approxima-
tion is well verified by numerical simulations (Fig. 3).
As in the case of concentration sensing error, a scaling

transition is found in the limit of scarce correct ligands,
x ≪ 1. When α > 1=2, one obtains

FP≈
e−ð1=2Þλ2nx2=gðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πλ2nx2=gðαÞ

p ; FN ≈
e−ð1=2Þð1−λÞ2nx2=gðαÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πð1− λÞ2nx2=gðαÞ

p ;

ð11Þ

while when α < 1=2 both error rates decay as
∼ðnxγÞ−1=2 exp½−Cnxγ�, with γ ¼ ð1 − αÞ−1, 1 < γ < 2
and C a function of α and λ (Appendix B.2 [35]). The
time T necessary to make a reliable decision scales as
½4Dað1 − pÞN�−1ctotc−2 for α > 1=2, and as ½4Dað1 −
pÞN�−1cγ−1tot c

−γ for α < 1=2. Equivalent scaling laws were
obtained in [33] for minimal on-the-fly detection times.

Can biological systems approach the physical bound on
concentration sensing given by Eq. (7)? To gain insight into
this question, one can expand Eq. (6) at first order in x to
get an approximation to the maximum likelihood estimate
when α > 1=2 (for α < 1=2 this expansion gives quantities
with diverging means and cannot be used):

x� ≈
2α − 1

ð1 − αÞ2
1

n

Xn
i¼1

ðαeð1−αÞr0ti − 1Þ: ð12Þ

This estimator, which is subject to the same asymptotic
error as in Eq. (8), suggests a simple strategy, where each
receptor signals “positively” with a rate that depends on
how long it has been bound, αð1 − αÞr0eð1−αÞr0t, and
“negatively” (i.e., with an opposite effect on the readout,
see below) through a fixed burst ðα − 1ÞδðtÞ upon binding,
so that the net effect of each binding event i on the readout
molecule concentration isZ

ti

0

dt½αð1−αÞr0eð1−αÞr0t� þα− 1¼ αeð1−αÞr0ti − 1; ð13Þ

i.e., exactly the argument of the sum in Eq. (12).
This idea can be implemented biologically by a cascade

of receptor conformational states triggered by binding, and
proceeding irreversibly from states 1 to m, each transition
to the next state occurring with rate s (Fig. 4). The ligand is
free to detach from the receptor at any time, bringing the
receptor back to the unbound state 0. The receptors signal
through the production or activation of two molecules B
and D with opposite effects on a push-pull network
governing the state of a molecule X, which provides the
final readout for x through its modified state X�. If one
requires that the equilibration of B and D are fast, and that

FIG. 3 (color online). Error in the detection of the correct
ligand. Numerical and analytical estimate of the rate of false
positive versus false negative errors in the detection of a small
fraction x of correct ligands, as the detection threshold θ is varied,
for n ¼ 105 and (a) α ¼ 0.3 and x ¼ 0.003 and (b) α ¼ 0.7 and
x ¼ 0.045. The black curve is the result of a numerical experi-
ment, repeated 5 × 105 times in the presence of the correct ligand,
and 5 × 105 without, and where a likelihood ratio test L2ðxÞ > θ
was used with a varying threshold θ. The red curve is the
analytical prediction from Eq. (10). The green to blue curves
show the performance of optimized networks schematized in
Fig. 4, for various numbers of receptor states m.
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X and X� are always in excess in the Michaelis-Mentens
reactions, then

dX�

dt
¼ X0

XN
j¼1

ðbμðjÞ − dμðjÞÞ; X0 ¼ const; ð14Þ

where μðjÞ is the state of the jth receptor, and b0 ¼ d0 ¼ 0.
For the purpose of this discussion, the internal molecules B,
D, and X are assumed to be unaffected by biochemical
noise, restricting the source of noise to the input alone.
In this design X� increases indefinitely to mimic the sum
in Eq. (12) over all events at all receptors. A more a
realistic but equivalent scheme would involve a running
sum over an effective time T, obtained by relaxing X� to X
with rate ∼T−1 [15].
When the number of states m is large and the transitions

between them are rapid, X� can track Eq. (12) with arbitrary
precision when α > 1=2. In that case, the receptor state μ
provides an approximation to the time since binding,
μ ≈ st. Then, for example, receptors signaling positively
with rate bμ ∝ αð1 − αÞr0eð1−αÞr0μ=s≈αð1 − αÞr0eð1−αÞr0t,
and negatively with rate dμ ∝ ð1 − αÞðs=μ0Þe−μ=μ0≈
ð1 − αÞδðtÞ (with μ0 an adjustable parameter) would
exactly realize Eq. (13) and thus the estimator of
Eq. (12) in the limit m ≫ s=r ≫ μ0 ≫ 1.
Although such optimal performance is only reached

for large m and α > 1=2, this network design may still
perform well in more general situations. One can optimize
the expected error produced by this network over the
net signaling rates ðbμ − dμÞ, with the constraint that the
mean effect of binding incorrect ligands on X� be zero, so
that ΔX� ∝ c on average (Appendix C [35]). Figure 5
shows how the performance of such optimized networks

approaches the theoretical bound as the number of states m
increases. The convergence is significantly worse for
α < 1=2 at small x. In that regime, the estimator of
Eq. (12) is not valid, suggesting that this network design
may not achieve the optimal bound even with an infinite
number of states. The output of these networks can also be
used to detect ligands. Their performance in doing so is
compared to the optimal discrimination errors of Eq. (10)
in Fig. 3.
The principle of maximum likelihood not only yields the

fundamental bound on the accuracy of discerning cognate
ligands from spurious ones, but also suggests biochemical
solutions to approach this optimal bound. Such maximum-
likelihood inspired designs have been previously proposed
in the case of a single ligand [15,19]. The network structure
proposed in this study (Fig. 4) is reminiscent of kinetic
proofreading schemes and their generalizations, which
provide a well-known solution to the ligand discrimination
problem [26,28,29,32,36]. An important difference is that
here signaling occurs during all steps, albeit at various, fine-
tuned rates, and with potentially negative contributions,
the role of which is to buffer the effect of wrong ligands.
Consistent with this prediction, it was shown that a negative
interaction through a diffusible molecule between kinetic-
proofreading receptors could mitigate the effects of large
numbers of incorrect ligands in a discrimination task [26].
The present results are relevant beyond the particular

case of sensing by receptors, and apply to any kind of
biochemical signaling in the presence of competing ligands
or “cross talk.” This is the case, for example, in the context
of gene regulation, where competing transcription factors
may bind regulatory sites unspecifically, a problem par-
ticularly acute in metazoans [37].
The scaling transition occurring at the binding constant

ratio α ¼ 1=2 suggests that different strategies should be
employed depending on how hard the discrimination task
is. In particular, the approximate but biologically imple-
mentable estimator of Eq. (12) curiously breaks down in the
easy discrimination regime, α < 1=2. In that regime, the
optimal bound is harder to achieve because it is dominated
by rare, long binding events that are hard to encode by

FIG. 5 (color online). Network performance. Error made by
optimized networks with a finite number of receptor states m
(green to blue curves), compared to the theoretical bound
(red curve), for (a) x ¼ 10−2 and (b) x ¼ 10−4.

FIG. 4 (color online). Network for sensing the concentration of
correct ligands. Upon binding, each receptor enters a cascade of
m states along which it proceeds with rate s. The ligand can
detach at any moment with rate r or r0 depending on its identity
(correct or incorrect), bringing the receptor back to the unbound
state 0. While in the conformational state μ ¼ 1;…; m, the
receptor activates two enzymes B and D with rates bμ and dμ,
each catalyzing two opposite Michaelis-Mentens reactions of a
pull-push network. B and D are assumed to equilibrate fast
and to be always limiting in the reactions they catalyze, so
that dX�=dt ∝ bμ − dμ.
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biochemical solutions. The example of immune recognition
falls precisely into that regime, with a binding constant
ratio α between agonist and nonagonist ligands ranging
from one fifth to one third [27]. More elaborate network
designs, probably with feedback, may be needed to achieve
the theoretical bound Eq. (7) in that case. Finally, this study
has assumed throughout that the unbinding rates r and r0
are known to the system. Complex mixtures of ligands with
unknown binding constants would make for interesting
generalizations.

I thank A. Walczak for her helpful comments on the
manuscript.

Note added.—While this Letter was under review, a paper
treating a similar topic was submitted to the arXiv [38].

[1] H. C. Berg and E. M. Purcell, Biophys. J. 20, 193 (1977).
[2] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain,

Science 297, 1183 (2002).
[3] T. Gregor, D.W. Tank, E. F. Wieschaus, and W. Bialek,

Cell 130, 153 (2007).
[4] G. Tkačik and A. M. Walczak, J. Phys. Condens. Matter 23,

153102 (2011).
[5] C. G. Bowsher and P. S. Swain, Curr. Opin. Biotechnol. 28,

149 (2014).
[6] G. Tkačik and W. Bialek, arXiv:1412.8752.
[7] W. Bialek and S. Setayeshgar, Proc. Natl. Acad. Sci. U.S.A.

102, 10040 (2005).
[8] R. G. Endres and N. S. Wingreen, Phys. Rev. Lett. 103,

158101 (2009).
[9] K. Kaizu, W. de Ronde, J. Paijmans, K. Takahashi, F.

Tostevin, and P. R. ten Wolde, Biophys. J. 106, 976 (2014).
[10] R. G. Endres and N. S. Wingreen, Proc. Natl. Acad. Sci.

U.S.A. 105, 15749 (2008).
[11] W.-J. Rappel and H. Levine, Proc. Natl. Acad. Sci. U.S.A.

105, 19270 (2008).
[12] W. J. Rappel and H. Levine, Phys. Rev. Lett. 100, 228101

(2008).
[13] R. G. Endres and N. S. Wingreen, Prog. Biophys. Molec.

Biol. 100, 33 (2009).
[14] B. Hu, W. Chen, W. J. Rappel, and H. Levine, Phys. Rev.

Lett. 105, 048104 (2010).
[15] T. Mora and N. S. Wingreen, Phys. Rev. Lett. 104, 248101

(2010).

[16] P. Mehta and D. J. Schwab, Proc. Natl. Acad. Sci. U.S.A.
109, 17978 (2012).

[17] G. Lan, P. Sartori, S. Neumann, V. Sourjik, and Y. Tu,
Nat. Phys. 8, 422 (2012).

[18] N. B. Becker, A. Mugler, and P. R. ten Wolde, arXiv:
1312.5625.

[19] A. H. Lang, C. K. Fisher, T. Mora, and P. Mehta, Phys. Rev.
Lett. 113, 148103 (2014).

[20] C. C. Govern and P. R. ten Wolde, Proc. Natl. Acad. Sci.
U.S.A. 111, 17486 (2014).

[21] C. C. Govern and P. R. ten Wolde, Phys. Rev. Lett. 113,
258102 (2014).

[22] A. C. Barato, D. Hartich, and U. Seifert, New J. Phys. 16,
103024 (2014).

[23] F. Mancini, M. Marsili, and A. Walczak, arXiv:
1504.03637v1.

[24] A. C. Barato and U. Seifert, Phys. Rev. Lett. 114, 158101
(2015).

[25] D. Hartich, A. C. Barato, and U. Seifert, New J. Phys. 17,
055026 (2015).

[26] J.-B. Lalanne and P. François, Proc. Natl. Acad. Sci. U.S.A.
112, 1898 (2015).

[27] O. Feinerman, R. N. Germain, and G. Altan-Bonnet,
Molecular immunology 45, 619 (2008).

[28] J. J. Hopfield, Proc. Natl. Acad. Sci. U.S.A. 71, 4135
(1974).

[29] J. Ninio, Biochimie 57, 587 (1975).
[30] T. W. McKeithan, Proc. Natl. Acad. Sci. U.S.A. 92, 5042

(1995).
[31] P. François, G. Voisinne, E. D. Siggia, G. Altan-Bonnet, and

M. Vergassola, Proc. Natl. Acad. Sci. U.S.A. 110, E888
(2013).

[32] J. B. Lalanne and P. François, Phys. Rev. Lett. 110, 218102
(2013).

[33] E. D. Siggia and M. Vergassola, Proc. Natl. Acad. Sci.
U.S.A. 110, E3704 (2013).

[34] S. M. Kay, Fundamentals of Statistical Signal Processing:
Estimation Theory (Prentice Hall PTR, Upper Saddle River,
NJ, 2001).

[35] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.115.038102 for de-
tailed derivations.

[36] A. Murugan, D. A. Huse, and S. Leibler, Proc. Natl. Acad.
Sci. U.S.A. 109, 12034 (2012).

[37] S. A. Cepeda-Humerez, G. Rieckh, and G. Tkačik, arXiv:
1504.05716.

[38] V. Singh and I. Nemenman, arXiv:1506.00288.

PRL 115, 038102 (2015) P HY S I CA L R EV I EW LE T T ER S
week ending
17 JULY 2015

038102-5

http://dx.doi.org/10.1016/S0006-3495(77)85544-6
http://dx.doi.org/10.1126/science.1070919
http://dx.doi.org/10.1016/j.cell.2007.05.025
http://dx.doi.org/10.1088/0953-8984/23/15/153102
http://dx.doi.org/10.1088/0953-8984/23/15/153102
http://dx.doi.org/10.1016/j.copbio.2014.04.010
http://dx.doi.org/10.1016/j.copbio.2014.04.010
http://arXiv.org/abs/1412.8752
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1073/pnas.0504321102
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1103/PhysRevLett.103.158101
http://dx.doi.org/10.1016/j.bpj.2013.12.030
http://dx.doi.org/10.1073/pnas.0804688105
http://dx.doi.org/10.1073/pnas.0804688105
http://dx.doi.org/10.1073/pnas.0804702105
http://dx.doi.org/10.1073/pnas.0804702105
http://dx.doi.org/10.1103/PhysRevLett.100.228101
http://dx.doi.org/10.1103/PhysRevLett.100.228101
http://dx.doi.org/10.1016/j.pbiomolbio.2009.06.002
http://dx.doi.org/10.1016/j.pbiomolbio.2009.06.002
http://dx.doi.org/10.1103/PhysRevLett.105.048104
http://dx.doi.org/10.1103/PhysRevLett.105.048104
http://dx.doi.org/10.1103/PhysRevLett.104.248101
http://dx.doi.org/10.1103/PhysRevLett.104.248101
http://dx.doi.org/10.1073/pnas.1207814109
http://dx.doi.org/10.1073/pnas.1207814109
http://dx.doi.org/10.1038/nphys2276
http://arXiv.org/abs/1312.5625
http://arXiv.org/abs/1312.5625
http://dx.doi.org/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1103/PhysRevLett.113.148103
http://dx.doi.org/10.1073/pnas.1411524111
http://dx.doi.org/10.1073/pnas.1411524111
http://dx.doi.org/10.1103/PhysRevLett.113.258102
http://dx.doi.org/10.1103/PhysRevLett.113.258102
http://dx.doi.org/10.1088/1367-2630/16/10/103024
http://dx.doi.org/10.1088/1367-2630/16/10/103024
http://arXiv.org/abs/1504.03637v1
http://arXiv.org/abs/1504.03637v1
http://dx.doi.org/10.1103/PhysRevLett.114.158101
http://dx.doi.org/10.1103/PhysRevLett.114.158101
http://dx.doi.org/10.1088/1367-2630/17/5/055026
http://dx.doi.org/10.1088/1367-2630/17/5/055026
http://dx.doi.org/10.1073/pnas.1420903112
http://dx.doi.org/10.1073/pnas.1420903112
http://dx.doi.org/10.1016/j.molimm.2007.03.028
http://dx.doi.org/10.1073/pnas.71.10.4135
http://dx.doi.org/10.1073/pnas.71.10.4135
http://dx.doi.org/10.1016/S0300-9084(75)80139-8
http://dx.doi.org/10.1073/pnas.92.11.5042
http://dx.doi.org/10.1073/pnas.92.11.5042
http://dx.doi.org/10.1073/pnas.1300752110
http://dx.doi.org/10.1073/pnas.1300752110
http://dx.doi.org/10.1103/PhysRevLett.110.218102
http://dx.doi.org/10.1103/PhysRevLett.110.218102
http://dx.doi.org/10.1073/pnas.1314081110
http://dx.doi.org/10.1073/pnas.1314081110
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://link.aps.org/supplemental/10.1103/PhysRevLett.115.038102
http://dx.doi.org/10.1073/pnas.1119911109
http://dx.doi.org/10.1073/pnas.1119911109
http://arXiv.org/abs/1504.05716
http://arXiv.org/abs/1504.05716
http://arXiv.org/abs/1506.00288

