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After colliding with a surface, microswimmers reside there during the detention time. They accumulate
and may form complex structures such as biofilms. We introduce a general framework to calculate the
distribution of detention times using the method of first-passage times and study how rotational noise and
hydrodynamic interactions influence the escape from a surface. We compare generic swimmer models to
the simple active Brownian particle. While the respective detention times of source dipoles are smaller, the
ones of pullers are larger by up to several orders of magnitude, and pushers show both trends. We apply our
results to the more realistic squirmer model, for which we use lubrication theory, and validate them by
simulations with multiparticle collision dynamics.
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Biological microswimmers such as bacteria are omni-
present in our everyday life. At the micron scale their
locomotion in an aqueous environment is determined by
low-Reynolds-number hydrodynamics and influenced by
thermal and intrinsic biological noise [1,2]. In real envi-
ronments such as the human body [3] or the ocean [4,5]
microorganisms swim in the presence of soft or solid
boundaries where they may form complex aggregates such
as biofilms [6]. This letter develops a general approach for
investigating the fundamental and biologically relevant
question of how long a swimming microorganism resides
at bounding surfaces by accounting for both hydrodynamic
swimmer-wall interactions and noise.
To develop an understanding for the accumulation and

the dynamics of microorganisms near walls, several impor-
tant aspects have been investigated recently: swimmer-wall
hydrodynamic interactions [7–10], thermal and intrinsic
noise [7,11], cilia- and flagella-wall interactions [12],
bacterial tumbling [13], and buoyancy [14]. Whether
stochastic motion or swimmer-wall hydrodynamic inter-
actions determine the reorientation of microswimmers at a
surface and how they both influence the bacterial distri-
bution between parallel plates has been discussed con-
troversially [7,8,11]. Hydrodynamic interactions trap
bacteria at surfaces [8,15], force them to swim in circles
[16], or even suppress bacterial tumbling [13]. However,
nontumbling bacteria [7,11] or elongated artificial micro-
swimmers [17] use rotational noise to escape from surfaces.
Artificial microswimmers such as active Janus particles

or squirmers, which are driven by a surface velocity field,
have been studied in front of a no-slip wall both in
experiments [18,19] and by theoretical models. The latter
either include hydrodynamic interactions [15,20–24] or
only consider active Brownian particles [18,25–28].

An important prerequisite for the observed accumulation
near walls are the relatively large times microswimmers
reside at a surface before leaving it [17,18]. In this article
we call these swimmer-wall contact times detention times
and calculate their distributions near a plane no-slip surface
based on the method of first-passage times [29]. For generic
microswimmers we demonstrate that hydrodynamic inter-
actions, relative to pure rotational noise, can either increase
the mean detention time by several orders of magnitude or
also decrease it.
At low Reynolds number the motion of an axisymmetric

microswimmer with orientation e in the presence of
bounding surfaces is governed by the Langevin equations

_r ¼ vA þ vHI þ vN þ…;

_e ¼ Ω × e with Ω ¼ ΩHI þΩN þ…; ð1Þ

which account for the stochastic dynamics of position r and
orientation e. Here we only consider the influence of the
activity of the swimmer (vA ¼ Ue with bulk swimming
velocity U), hydrodynamic interactions with the surface
(HI), and noise (N). However, our approach can, in
principle, be used for any dynamics which is of the form
of Eq. (1) and also include, e.g., steric or electrostatic
interactions as well as external fluid flow.
We consider a spherical microswimmer, moving on a

smooth trajectory, which reaches the wall at time t0 with an
angle θ0 against the surface normal (see Fig. 1 and a typical
trajectory in the Supplemental Material [30]). This occurs
at Péclet number Pe ¼ UR=Dt ≫ 1, where R is the radius
and Dt the translational diffusion coefficient of the
swimmer. Typical values are Pe≳ 102 for bacteria, Pe≳
103 for sperm cells and Pe≳ 104 for Chlamydomonas. The
swimmer stays at a height h ≈ R, so we neglect
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translational motion in the following [31]. The swimming
direction e diffuses on the unit sphere but also drifts with
angular velocity ΩHI ¼ ΩHIeϕ. Once the swimming direc-
tion has reached the escape angle θ�, to be defined below
for each swimmer type, the microswimmer leaves the
surface at time t�. This stochastic process is described
by the Smoluchowski equation ∂tP ¼ LP ¼ ð−R ·ΩHI þ
DrR2ÞP, whereR ¼ e × ∇e is the rotation operator andDr
the rotational diffusion constant [26,32].
Rotational diffusion along the azimuthal angle ϕ does

not influence the escape from the surface and it is sufficient
to consider the conditional probability pðθ; t�jθ0; t0Þ ¼R
2π
0 dϕ0

R
2π
0 dϕPðθ;ϕ; t�jθ0;ϕ0; t0Þ. To calculate the distri-

bution of detention times at the surface, we use the Fokker-
Planck approach of first-passage problems [29]. The
integrated probability gðθ�;tjθ0Þ¼

R
π
θ�pðθ;t�jθ0;t0Þsinθdθ

for finding the swimming direction in the angular interval
½θ�; π� at time t ¼ t� − t0 obeys the adjoint Smoluchowski
equation (see Ref. [30])

∂tgðθ�; tjθ0Þ ¼ Lþðθ0Þgðθ�; tjθ0Þ; ð2Þ

with Lþðθ0Þ ¼ Ωðθ0Þ∂θ0 þDr∂2
θ0
, where Ωðθ0Þ ¼

ΩHIðθ0Þ þDr cot θ0 is an effective angular drift
velocity. To solve it, one uses at θ0 ¼ π reflective

[∂θ0gðθ�; tjθ0Þjπ ¼ 0] and at θ0 ¼ θ� absorbing
[gðθ�; tjθ�Þ ¼ 0] boundary conditions. Now,
−∂tgðθ�; tjθ0Þdt is the probability to leave the surface with
escape angle θ� at time t in the time interval dt, so

fðθ�; tjθ0Þ ¼ −∂tgðθ�; tjθ0Þ ð3Þ

denotes the distribution of detention times t ¼ t� − t0 for
being trapped at the surface (DTD).
To investigate how hydrodynamic interactions compared

to pure rotational noise influence the detention time, we
calculate the DTD fðθ�; tjθ0Þ for several model micro-
swimmers by numerically solving Eq. (2) and using Eq. (3).
From here on, we always rescale time by the ballistic time
scale τs ¼ R=U and introduce the persistence number
Per ¼ ð2DrτsÞ−1. Since ð2DrÞ−1 is the orientational
correlation time, Per ≫ 1 means directed swimming
[11,33]. Typical values are Per ≳ 100 for sperm cells
[34] and nontumbling E. coli [7], or Per ≈ 25 for
Chlamydomonas [7].
First, we consider a spherical active Brownian particle

(ABP) with ΩHI ¼ 0 near a surface [26,28]. The escape
angle is simply θ� ¼ π=2. From the known propagator of
free rotational diffusion [35], one can determine gðθ�; tjθ0Þ
and ultimately the DTD becomes

f

�
π

2
; tjθ0

�
¼ π

2Per

X∞

l¼1;oddl

ð−1Þ½ðlþ1Þ=2�e−lðlþ1Þt=ð2PerÞ lð2lþ 1Þ
2l−1

�
l − 1

l−1
2

�
Plðcos θ0Þ; ð4Þ

where Plðcos θ0Þ are Legendre polynomials. The DTD is
plotted in Fig. 2(a) for θ0 ¼ 3π=4 and Per ¼ 10. The mean
detention time T ¼ R

∞
0 tfðθ�; tjθ0Þdt of the ABP at the

surface is calculated following Ref. [29],

TABP ¼ 2Per lnð1 − cos θ0Þ: ð5Þ

We plot TABP versus θ0 in Fig. 2(b). Note that the most
likely detention time tmax [see Fig. 2(c)] is much smaller
compared to TABP due to the slow decay of fðθ�; tjθ0Þ.
Second, we consider microswimmers that generate either

a force-dipole flow field of strength p or a source dipole

field of strength q > 0 in the surrounding fluid [2].
Examples for the first case are pushers (p > 0) such as
bacteria, or pullers (p < 0) such as the biflagellated algae
Chlamydomonas. Source dipoles are realized by active
droplets [36] or Paramecia [37]. Each flow field is
described by a flow singularity located in the center of

FIG. 1 (color online). Definition of coordinate system and
sketch of a typical trajectory for a spherical microswimmer
approaching a plane no-slip surface (h ¼ h�) at time t0 and
leaving the surface at t�. The detention time at the
surface is t� − t0.

(a) (b)

(c)

FIG. 2 (color online). (a) DTD for the ABP and source- and
force-dipole swimmer with Per ¼ 10 and an initial angle
θ0 ¼ 3π=4. (b) Mean detention time T versus initial angle θ0.
(c) Most likely detention time tmax (maximum of f).
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the swimmer. For simplicity, we assume that the description
by singularities is still valid close to the wall (see also the
discussion in Refs. [7,15]). Their flow fields interact
hydrodynamically with the surface and thereby generate
wall-induced angular velocitiesΩHI of the microswimmers.
At the wall (h ¼ R) they read ΩHI ¼ 3p sin θ cos θ=8 for
the force dipole and ΩHI ¼ −3q sin θ=8 for the source
dipole, respectively [8,15,38]. The stable orientations θs of
our swimmer types at the wall in the absence of noise are
sketched in the inset of Fig. 2(a). They are calculated from
ΩHIðθsÞ ¼ 0 and ∂ΩHIðθÞ=∂θjθ¼θs

< 0.
Hydrodynamic interactions of the source dipole (q > 0)

always rotate the swimmer away from the surface until it
leaves the surface at θ� ¼ π=2. Hence, the width of
the DTD is much narrower compared to the ABP [see
Fig. 2(a)]. The mean detention time T plotted in Fig. 2(b) is
much smaller compared to TABP for all incoming angles θ0
due to ΩHI ∝ −q and the most likely detention time tmax is
comparable to T [see Fig. 2(c)].
The puller (p < 0) is rotated towards the surface by

hydrodynamic interactions if θ > π=2 and can only escape
if angular noise drives it to θ < θ� ¼ π=2. As a conse-
quence, the DTD only has a weakly pronounced maximum
and decays very slowly [see Fig. 2(a)]. Therefore, at Per ¼
10 the mean detention time of the puller is by an order of
magnitude larger than for the ABP. We note that for
biological swimmers direct flagella-wall interactions can
significantly influence the reorientation at the wall. For the
puller algae Chlamydomonas Ωsteric > 0, which rotates
the cell away from the surface [12] and strongly decreases
the detention times compared to ABPs (see also Ref. [30]).
The situation of the pusher (p > 0) is more complex.

Because of hydrodynamic interactions it has a stable
orientation parallel to the wall [θs ¼ π=2, see inset of
Fig. 2(a)]. Since, in addition, the wall-induced velocity
vHIðθsÞ pushes it towards the wall, a noiseless pusher
always swims at the wall [8] and T → ∞. In the presence of
noise the swimmer orientation fluctuates about its stable
direction. The pusher stays trapped until the escape angle
θ� < π=2 is reached, where the total swimmer velocity
starts to point away from the wall. Thus, the escape angle is
determined by the condition ½vAðθ�Þ þ vHIðθ�Þ� · ez ¼ 0,
which gives θ� ¼ arccos½ð−4þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16þ 27p2

p
Þ=ð9pÞ� [7,8].

Hydrodynamic interactions of the pusher with the
surface can either enhance or reduce the detention time
compared to an ABP. On the one hand, increasing p ∝ ΩHI
from zero reduces the time to reach the stable orientation
and thus the time to get closer to the escape angle θ� < π=2.
This can reduce the mean detention time compared to
ABPs for small p as illustrated in Fig. 2(b). On the
other hand, increasing p further traps the orientation more
strongly at θs ¼ π=2 and also pushes θ� more
and more away from θs. Since rotational diffusion
has to compensate for both effects, the detention time
increases.

Figure 3(a) gives an overview of the force-dipole
swimmer by plotting T=TABP in a color code versus Per
and p. For negative p the strong increase of T beyond TABP

with increasing jpj is visible and also documented in the
inset for two values of Per. For small positive p and for
Per ≳ 5 a clear minimum of T develops as just discussed
(see also the inset). In particular, in region I one finds
T < TABP. For example, for Per ¼ 160 the minimum at
p ¼ 0.4 amounts to T=TABP ¼ 0.18. Interestingly, this
minimum occurs at a dipole strength comparable to the
one estimated for E. coli bacteria [7].
In region II, T grows to 10TABP or well beyond. The

orientation of the pusher has time to equilibrate about
θs ¼ π=2 and then attempts to reach θ� by rotational noise.
Indeed, one can rewrite the effective rotational drift in
Eq. (2) by introducing an effective angular potential
Ω ¼ −∂Veff=∂θ with Veff ¼ V þ Vr ¼ 3p cos2 θ=16−
lnðsin θÞ=ð2PerÞ, where the second term comes from the
3D rotational diffusion. However, the pusher escaping from
the wall at θ� cannot be viewed as a typical Kramers
problem [29] since the orientation vector e does not pass a
smooth potential barrier of height ΔVeff when reaching the
escape angle θ�. Instead, the swimmer orientation moves up
the potential Veff by an amount ΔVeff ¼ Veffðθ�Þ −
VeffðθsÞ and when the pusher leaves the wall at θ�, it also
leaves the range of Veff [see Fig. 3(b)]. However, we can
derive an approximate formula for large PerΔVeff with the

(a)

(b) (c)

FIG. 3 (color online). (a) Mean detention time T=TABP for the
force-dipole swimmer plotted versus p and Per for θ0 ¼ 3π=4.
Within region I, T=TABP < 1, while in region II, T=TABP ≫ 1.
Inset: TðpÞ=TABP for two values of Per and compared to Eqs. (6)
and (7) (dashed lines). (b),(c) Effective angular potentials VeffðθÞ
and deterministic potentials VðθÞ (Per → ∞) for a pusher
(b) (p ¼ 3) and a puller (c) (p ¼ −1Þ at Per ¼ 20.
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Arrhenius factor reminiscent of Kramers’mean escape time
[30,40],

Tpusher ≈
ffiffiffi
π

p

jV 0
effðθ�Þj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PerV 00

effðθsÞ
p e2PerΔVeff : ð6Þ

Interestingly, in case of the puller, the rotational-noise
contribution Vr shifts the most stable orientation to θs ¼
π − arcsin½2= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−3pPer
p � < π [see Fig. 3(c)] [30]. Here, we

can approximate T by Kramers’ formula [30,41]

Tpuller ≈
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijV 00
effðθ�ÞjV 00

effðθsÞ
p e2PerΔVeff : ð7Þ

The inset of Fig. 3(a) demonstrates that T calculated from
Eqs. (6) and (7) at jpjPer ≫ 1 agrees very well with the one
obtained by numerically solving Eqs. (2) and (3).
While so far we considered generic microswimmer

models, we now turn to the spherical squirmer [42], which
serves as a model for ciliated microorganisms such as
Paramecium [37,42] and Volvox [10] but also for active
emulsion droplets [36]. The squirmer propels itself by
an axisymmetric surface velocity field vs ¼ 3

2
ð1þ

βe · r̂sÞ½ðe · r̂sÞr̂s − e�, where r̂s is the unit vector pointing
from the center of the squirmer to its surface. The neutral
squirmer (β ¼ 0) creates the bulk flow field of a source
dipole with q ¼ 1=2, while β ≠ 0 adds an additional force-
dipole field with p ¼ −3β=4 [43]. Recent studies with
squirmer-wall interactions already exist but without any
noise [15,22,23,44]. Using lubrication theory, the authors
of Ref. [43] have calculated the dimensionless friction
torque acting on the squirmer in front of a wall due to
hydrodynamic interactions [43],

M ¼ ð6π=5Þð1 − β cos θÞ sin θðln ϵ−1 − cÞ; ð8Þ

where ϵ ¼ h − 1 ≪ 1 is a small distance and c ¼ const.
This gives the wall-induced angular velocity
ΩHI ¼ −M=γr, where γr is the rotational friction coefficient
near the surface [45,46]. Note that the neutral squirmer
(β ¼ 0) behaves like the generic source dipole even close to
the wall since ΩHI ∼ − sin θ. This might explain why far-
field hydrodynamic interactions describe the near-wall
swimming of neutral squirmers as shown in Ref. [15].
The β-dependent part in Eq. (8) adds to ΩHI the force-
dipole term ∼ − p sin θ cos θ. Acting alone, it rotates the
squirmer pusher (β < 0) towards the wall and therefore it
behaves like the generic puller with increased detention
time and vice versa. These results are in accordance with
recent simulations at finite Reynolds numbers [23].
To demonstrate that our 1D model is applicable, we

perform full 3D mesoscale hydrodynamic simulations
using multiparticle collision dynamics (MPCD) [47–49].
It solves the Navier-Stokes equations for the fluid around
the squirmer and the wall and naturally includes thermal

fluctuations [50–53]. First, we numerically determine
c ≈ 0.9 [30] and then explicitly simulate many swimming
trajectories of swimmer-wall collision events for a neutral
squirmer at different incoming angles. Figure 4 shows
results for the mean detention time T plotted versus the
initial angle θ0, which agree well with our analytic model.
The mean detention time of the deterministic swimmer,
Tdet ∝ ln tanðθ0=2Þ [30], deviates from the full model only
close to the unstable equilibrium orientation at θ ¼ π. Here
Tdet → ∞, whereas noise renders T finite and helps the
swimmer to escape. The inset of Fig. 4 shows a convincing
agreement of the DTDs determined from the analytic model
and MPCD simulations.
To assess fluctuations of the position hðtÞ above the

surface, which influence ΩHI [8,54], we may define an
escape event by reaching a certain escape height h� > 1.
For the state variable yðtÞ ¼ ðh; θÞ one defines the prob-
ability gðy�; tjy0Þ, for finding the swimmer below h� at time
t ¼ t� − t0 while the initial state y0 at t0 starts at h0 ∈
½1; h�Þ and θ0 ∈ ½0; π� [55]. The probability obeys the
adjoint Fokker-Planck equation

∂tgðy�; tjy0Þ ¼ ½ðvA þ vHIÞ · ez∂h0 þDt∂2
h0

− ðΩHI þDr cot θ0Þ∂θ0 þDr∂2
θ0
�gðy�; tjy0Þ;

ð9Þ

with the initial condition gðy�; t0jy0Þ ¼ δðy� − y0Þ, and
reflecting [at y0 ¼ ð1; πÞ] and absorbing [at
y0 ¼ ðh�; θ�Þ] boundary conditions for gðy�; tjy0Þ. Then,
fðy�; tjy0Þ ¼ −∂tgðy�; tjy0Þ is the DTD for detention time
t. In Ref. [30] we show that for sufficiently large Pe and h�
the detention times in the 2D model are larger compared to
the 1D model. Small h� can also be reached by translational
Brownian motion, which reduces the detention times.

FIG. 4 (color online). Mean detention time T of a neutral
squirmer plotted versus the initial angle θ0 for Per ¼ 110 and
ϵ ¼ 0.01 (approximate mean distance from the wall measured
fromMPCD simulations) and compared to the analytic 1D model
[Eqs. (2) and (3)], and the deterministic model (Per → ∞).
Inset: Distribution of detention times from MPCD simulations
and compared to the analytic model.
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To conclude, based on the method of first-passage times,
we developed a formalism to determine the distribution of
detention times for microswimmers near a plane no-slip
surface taking into account hydrodynamic interactions and
rotational noise. For generic microswimmers such as source
dipoles, pushers, and pullers we demonstrated that the
mean detention time can vary over several orders of
magnitude relative to the ABP depending on persistence
number Per and swimmer strengths q, p. This allows us to
quantify the relative importance of hydrodynamic inter-
actions and rotational noise. Our model also provides a
route to quantify wall accumulation of microswimmer
suspensions confined between two plates, as determined
experimentally for different microorganisms [8,11,13,56].
Our method can be extended to include further drift terms,
for example, due to nonspherical swimmer shape, which
further modifies the reorientation dynamics at the wall
[11,15]. Therefore, it offers a systematic approach for
studying how artificial as well as biological micro-
swimmers behave at surfaces.
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