
Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum
Field Effect Transistor

Binhui Hu,1,2 M. M. Yazdanpanah,1,2 B. E. Kane,1,2 E. H. Hwang,2,3,4 and S. Das Sarma2,3
1Laboratory for Physical Sciences, University of Maryland, College Park, Maryland 20740, USA

2Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
3Condensed Matter Theory Center, Department of Physics, University of Maryland, College Park, Maryland 20742-4111, USA
4SKKU Advanced Institute of Nanotechnology and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea

(Received 13 February 2015; published 13 July 2015)

We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor
where we study electron and hole (low-temperature 2D) transport in the same device simply by changing
the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D
hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic
temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with
the peak electron mobility (∼18 m2=V s) being roughly 20 times larger than the peak hole mobility (in the
same sample). Our theory explains the data well using random phase approximation screening of
background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the
strong temperature dependence of the effective screened disorder.
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It is now well established that, quite generically, “high
mobility” and “low-density” semiconductor-based effec-
tively metallic 2D systems can manifest anomalous low
temperature “metallic" (i.e., dσ=dT < 0 with σ being the 2D
conductivity) transport behavior, where a modest variation in
temperature (T ≈ 0.1 − 4 K) could decrease σ by a large
amount, with variations in σðTÞ by as large as a factor of ∼2
observed in Si MOSFET based 2D electron systems
(2DESs) [1] and GaAs-based 2D hole systems (2DHSs)
[2] in a temperature regime (0.1–4 K) where phonons are
inactive due to the Bloch-Grüneisen (BG) suppression of
phonon occupancy. This strong metallic temperature
dependence (the precise quantitative definition of “high
mobility” and “low density” is materials dependent and
varies from system to system [3]) in 2D semiconductor
structures is in sharp contrast with 3D metals where, at low
temperatures (≲10 K), the conductivity typically saturates to
a disorder-dependent (and temperature-independent) con-
stant (σ0) as the system enters the BG phonon scattering
regimewith σðTÞ ≈ σ0 −OðT4–6Þ. By contrast, the observed
anomalous σðTÞ in high-mobility and low-density 2D
semiconductor systems appears to follow a leading-order
linear temperature dependence, with σðTÞ ≈ σ0 −OðTÞ over
a wide temperature range (0.1–4 K) although eventually (for
T < 50 mK) σðTÞ saturates (or manifests weak localization
behavior [4]), perhaps because of electron heating effects
invariably present in semiconductors.
In the current Letter we report three remarkable new

results on the anomalous 2D metallic behavior by combin-
ing experiment and theory: (i) we present the first exper-
imental results on the 2D metallic behavior in an ambipolar
system where the metallic temperature dependence in the

conductivity is separately observed for both 2DES and
2DHS in the same device simply by changing an external
gate voltage (we mention that low-mobility ambipolar Si
2D devices have been reported earlier in the literature [5]
without any observation of the temperature-dependent
metallic transport, which is the focus of our study); (ii) our
observed “metallicity” (i.e., the temperature-induced frac-
tional change in the conductivity) is an unprecedented
factor of 8 (2) in the 2DES (2DHS) for T ¼ 0.3–4 K range
and carrier density ∼3 × 1011 cm−2—this is by far the
largest temperature-induced fractional change in the met-
allic conductivity ever reported in any non-superconducting
system in such a small temperature window—for example,
earlier-studied 2D Si metallic systems in the literature [6]
show at most a factor of 3 change in the conductivity in the
same temperature window; (iii) we explain our observa-
tions qualitatively by calculating the temperature and
density dependent random phase approximation (RPA)-
Boltzmann conductivity using a realistic model of screened
Coulomb disorder where the main difference between
2DES and 2DHS arises from the effective valley degen-
eracy being 6 and 1 respectively by virtue of the qualita-
tively different band structures in the conduction and the
valence band of the Si(111) ambipolar field effect transistor
(FET) structure used in our experiment—this leads to the
screened effective disorder in the 2DES being much weaker
(and much more strongly temperature-dependent) than in
the 2DHS, although both see exactly the same bare
disorder, explaining the remarkable difference in the
mobility and the temperature dependence in the two cases.
The ambipolar FET device (we have actually studied

several such devices with similar results) we study is a
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high-purity and high-mobility hydrogen-terminated atomi-
cally flat (and nominally undoped) Si(111) structure, where
the electrons (holes) are induced near the H-Si(111) surface
by applying a positive (negative) voltage through a vacuum
barrier. Details of fabrication and characterization of such
Si-vacuum FETs (in contrast to the usual Si-SiO2

MOSFETs) with ultrahigh mobility, for both electrons
[7] and holes [8], have been described elsewhere [7–9].
The new aspect of the current work is the fabrication of a
Si-vacuum ambipolar FET where we can go from a 2DES
to a 2DHS simply by changing the external gate voltage
from positive to negative in a single device. Such ambipolar
devices had been studied earlier for low-mobility
Sið100Þ-SiO2 MOS systems [5] and for GaAs/AlGaAs
based undoped 2D structures [10–13], but no 2D metallic
behavior or temperature-dependent conductivity was
reported in either case. The great advantage of such an
ambipolar device is that the 2DES and the 2DHS “feel”
precisely the same bare disorder, and therefore a direct
comparison between the conductivity data between elec-
trons and holes in the same device should give us consid-
erable insight into the intrinsic aspects of the intriguing
metallic 2D phase.
In Figs. 1 and 2 we show the experimental results for

one typical ambipolar device [along with some of our
theoretical results to be described below also shown in
Fig. 2(c)]. The most important salient features of the
experimental results (Figs. 1 and 2) are briefly summarized
here: (i) The peak electron (hole) mobility in the device
reaches 180 000 cm2=V s (9 000 cm2=V s) at T ¼ 0.3 K
with an astonishing factor of 20 difference in the electron
versus hole mobility although both are being measured
in the same sample at the same temperature and carrier
density—by contrast, the corresponding high-mobility
GaAs=AlGaAs 2D ambipolar devices shows electron and
hole mobilities typically within a factor of 2–3 of each other
[13] which is expected just based on the electron/hole
effective mass difference; (ii) the observed temperature
dependence in the conductivity is much stronger for the
electrons than for the holes; (iii) the extrapolation of the
mobility (or the conductivity) to low gate voltage indicates
a rough mobility gap of 3V, which is approximately the
indirect band gap of Si as expected in an ambipolar device;
(iv) the carrier density dependence of the conductivity,
σðnÞ ∼ nα where n is the electron (or hole) density and α is
the density exponent of conductivity [14], gives α ¼ 1.3
(1.0) for electrons (holes) at T ¼ 0.3 K and α ¼ 2.2 (1.0)
for electrons (holes) at T ¼ 4.2 K in the “high-density”
(> 3 × 1011 cm−2) regime with α increasing at lower
density most likely due to density inhomogeneity effects
[15] which become strong at low carrier density in the
presence of random charged impurity centers; (v) both the
conductivity and the mobility (for both electrons and holes)
increase monotonically with increasing density with no
sign of conductivity saturation (or mobility decrease) at our

highest experimental density (∼1012 cm−2), indicating that
surface (or interface) roughness scattering, which domi-
nates 2D carrier transport in standard Si-SiO2 MOSFETs
[16,17] and in the GaAs-based gated ambipolar devices
[12,13], plays (at best) a minor role in the Si-vacuum 2D
structures (similar to the corresponding situation in GaAs-
based modulation-doped high-mobility 2D systems [18])
due to the atomically flat nature of our high-quality Si(111)
surface; (vi) the main density regime of interest
(> 1.5 × 1011 cm−2) for the study of the 2D effective
metallic behavior has kFl ≫ 1 [Fig. 2(a)] for both electrons
and holes (with kF, l being Fermi wave vector and mean
free path, respectively) implying that a Boltzmann theory
based transport theory should work well for both the 2DES
and the 2DHS existing in our ambipolar device; (vii) the
threshold carrier density [obtained by extrapolating the
measured electron or hole Hall density to zero conductivity
in Figs. 1(a)–1(d)] is almost the same for the 2DES and the
2DHS with the hole system having only a very small
amount of (∼8 × 109 cm−2) higher surface charge states

FIG. 1 (color online). Experimental results for an ambipolar
Si(111)-vacuum FET. (a) Electron and hole densities vs gate
voltage are shown. (b) Mobility and (c) conductivity for both
electrons (right panel) and holes (left panel) measured at T ¼
0.3 K (black) and T ¼ 4.2 K (red) are shown as a function of
density in linear scale. Inset shows the same data in (b) as a log
plot, where top (bottom) two lines are for electron (hole).
(d) Conductivity vs density relation is shown in semi-log scale.
(e) and (f) show conductivity vs density in log-log scale at T ¼
0.3 K and T ¼ 4.2 K, respectively. The fitting exponents α in the
relation of σ ∼ nα are given in the figures.
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populated by the gate, indicating the very high quality of
the sample and that the two systems have almost identical
background disorder (thus indicating that the very large
difference in the electron versus hole mobility is an intrinsic
effect not arising from any extrinsic difference in the
disorder in two cases).
In Fig. 2(c) we show our theoretically calculated σðn; TÞ

for the 2DES to be compared with the corresponding
experimental data in Fig. 2(b) whereas Fig. 2(a) shows that
for density > 1011 cm−2 the Boltzmann theory should be
valid as kFl ≫ 1 applies for the experimental conductivity.
The finite temperature 2D Boltzmann theory has already
been described by us in detail in our earlier work on Si
MOSFETs [3,19], and we only mention that the results
shown in Fig. 2(c) use finite-temperature and finite-wave
vector RPA screening [20] of the background disorder
which is taken to be unintentional random quenched
charged impurity centers in the 2D Si layer itself as well
as a small amount of surface roughness. The most impor-
tant parameter determining the theoretical σðn; TÞ here is
the valley degeneracy (gv) which is taken to be gv ¼ 6
consistent with the bulk conduction band structure of six
equivalent conduction band minima along the three sym-
metry axes of Si. Such a high (gv ¼ 6) valley degeneracy
for the 2DES on the Si(111) surface is consistent with
earlier experimental results on high mobility Si-vacuum
FETs [21], but not with most low mobility Si-SiO2

MOSFET samples studied in the literature [16] where
gv ¼ 2 is typically found most likely because of uniaxial
interface strain at the Si-SiO2 interface which lifts four of
the valleys higher in energy leaving a ground state valley
degeneracy of gv ¼ 2. Our independent SdH analysis of
magnetoresistance oscillations (not shown, but see, e.g.,
Ref. [21]) in the sample confirms that the system indeed has
gv ¼ 6. We emphasize that the effective mass difference
between electrons and holes in our Si(111) 2D system (only
a factor of 1.67) cannot explain at all the large difference in
our measured mobility.

We note that although theory and experiment agree
reasonably well qualitatively using gv ¼ 6 (and even
quantitatively for density above 1.3 × 1011 cm−2) in
Fig. 2, we have not attempted any quantitative fitting
because the precise disorder parameters are unknown in
the experiment. (We mention that using gv ¼ 2 in the
theory gives results in qualitative and quantitative disagree-
ment with the experimental data for the 2DES.)
In Fig. 3 we show the theoretical results for two

temperatures (T ¼ 0.3 K and 4.2 K) for both 2DES [both
gv ¼ 2; 6 are shown for the sake of comparison in Fig. 3(a)]
and 2DHS (only gv ¼ 1 is shown since the Si valence band
has no valley degeneracy). The theory reproduces all the
key features of the experimental data provided gv ¼ 6 (1) is
used for the 2DES (2DHS). In particular, there is a very
large (∼ a factor of 20) difference in the 2DES and 2DHS
mobilities although both see identical disorder. We have

FIG. 2 (color online). (a) Calculated kFl using experimental conductivity with different values of gv. (b) The experimentally measured
conductivity as a function of temperature for several electron densities, n ¼ 0.85, 0.91, 0.99, 1.15, 1.30, 1.46, 1.61, 1.92, 2.39, 3.17,
3.94, 4.72, 5.49, 6.12 × 1011 cm−2 (bottom to top). (c) Calculated conductivity in the presence of ionized channel impurities and surface
roughness for electron densities n ¼ 1.3, 1.5, 2.0, 3.0, 4.0, 4.5, 5.5, 6.0 × 1011 cm−2 (bottom to top). Inset in (c) shows the experiment
and theory results together for carrier densities (n ¼ 1.3, 1.46, 1.61, 1.92, 2.39, 3.17, bottom to top) demonstrating reasonable
agreement.

FIG. 3 (color online). (a) Calculated conductivity as a function
of carrier density for two different temperatures T ¼ 0.3 K (solid
lines) and 4.2 K (dashed lines). For the hole system the effective
masses mh ¼ 0.5m0 and gv ¼ 1 are used, and for the electron
system me ¼ 0.3m0 and gv ¼ 2, 6 are used. (b) The high density
exponents in the relation of σ ∼ nα are shown for an electron
system with gv ¼ 6 (top two lines) and hole system with gv ¼ 1
(bottom two lines). The solid (dashed) lines indicate the calcu-
lated conductivity at T ¼ 0.3 K (4.2 K). The dotted lines are for a
guide of exponents α shown in the figure.
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checked explicitly that this mobility difference arises
mainly from the different valley degeneracies in the two
cases—for example, changing the electron or hole effective
mass does not modify the results much whereas changing
the valley degeneracy for either electrons or holes has a
huge effect. The theory also reproduces the much stronger
temperature dependence of the 2DES conductivity com-
pared with the 2DHS case, again arising primarily from the
valley degeneracy difference. Finally, we show in Fig. 3(b)
the calculated exponent (with σ ∼ nα) for 2DES and 2DHS
at T ¼ 0.3 K and 4.2 K, finding for the 2DES (with gv ¼ 6)
the exponent α ¼ 1.3 and 2.2 for T ¼ 0.3 K and 4.2 K,
respectively, and for the 2DHS (with gv ¼ 1) α ¼ 1.0
and 1.1 for T ¼ 0.3 K and 4.2 K, respectively. These
theoretically calculated exponents are in agreement with
the experimental data shown in Figs. 1(e) and 1(f). We
emphasize that all our theoretical results assume the same
bare disorder for both 2DES and 2DHS and incorporate all
the realistic microscopic details [16]. We note that the small
threshold difference of 8 × 109 cm−2 surface charge den-
sity between the 2DES and the 2DHS has no quantitative
effect on our theoretical results.
Before concluding, we provide a simple intuitive under-

standing of the theory which successfully explains the data.
At first, the conductivity data appear intriguing because of
the huge difference in the quantitative behavior of the
conductivity for 2DES and 2DHS in the same sample.
Basically, this difference arises from the substantial
difference in the effective screened disorder seen by the
two kinds of carriers (electrons or holes) in the same
ambipolar device because of the large difference in the
conductance or valence band structure giving rise to
gv ¼ 6ðelectronsÞ=1ðholesÞ. The crucial dimensionless
quantities [3,14] determining both the mobility and the
temperature dependence of the conductivity are qTF=kF,
where qTF and kF are the 2D Thomas-Fermi and Fermi
wave vectors, and T=TF, where TF (¼ EF=kB) is the Fermi
temperature (EF is the Fermi energy). We emphasize that
the dimensionless interaction strength parameter rs ∝
m=

ffiffiffi

n
p

is in fact larger for the hole system than the electron
system, and is not relevant in controlling the temperature
dependence with the relevant control parameter being qsð¼
qTF=kFÞ ∼ g1.5v rs which is much larger for the 2DES
compared with the 2DHS in our system. We assume that
only screened Coulomb disorder (and not phonon scatter-
ing) determines the conductivity in the 2D Si system as is
expected in the T ¼ 0.3–4.2 K range [16]. The constraint
on T=TF is simply that it should not be too small in the
experimental temperature window for σðT; nÞ to have

strong T dependence. It is easy to see that TðhÞ
F =TðeÞ

F ∼ 3

using gðeÞv ¼ 6, gðhÞv ¼ 1 and the respective electron/hole
effective masses. (The hole effective mass is known to
increase from 0.3 to 0.36 in the experimental carrier density

range [22], but this does not affect our theory in any
quantitative manner.) Thus, the fractional conductivity
change, being linear in T=TF at low temperatures [20],
is expected to be much larger for 2DES than for 2DHS in a
given temperature range simply by virtue of the electron
valley degeneracy being six times larger. But this is only a
part of the explanation. The central quantity of key
importance in the theory [3,19,20] is the dimensionless
screening strength qs ¼ qTF=kF which determines both the
overall magnitude of the mobility as well as the magnitude
of the temperature dependence. It is easy to see that

qðeÞs =qðhÞs ¼ ðme=mhÞðgðeÞv =gðhÞv Þ1.5 ∼ 8, which implies that
the effective screening is much stronger for the 2DES than
for the 2DHS, leading to the conclusion that the mobility
ratio for the 2DES compared with the 2DHS goes approx-

imately as ðme=mhÞðqðeÞs =qðhÞs Þ2 ∼ 35, whereas the exact
numerical calculation gives more a factor of 20 difference
since the system is not strictly in the qs ≫ 1 and/or
T=TF ≪ 1 limit that these analytical approximations
assume. Similarly, the simplest analytical theory predicts
that the temperature-induced fractional conductivity

change should go as ðqðeÞs =qðhÞs ÞðTðhÞ
F =TðeÞ

F Þ ∼ 20 assuming
that qs ≫ 1 and T=TF ≪ 1 for both 2DES and 2DHS.
Since these strong-screening and low-temperature condi-
tions are not obeyed in the experiment, the realistic
difference in the temperature-dependent conductivity, as
obtained in our numerical results, is around a factor of 4.
For the theoretical details we refer to the existing liter-
ature [3,19,20].
In conclusion, we report the first experimental observa-

tion of very strong metallic temperature dependence of 2D
conductivity in both electrons and holes in an ambipolar
Si(111) system, with the electron (hole) conductivity
changing by a factor of 8 (2) at a density of 3 ×
1011 cm−2 for a temperature change from 0.3 K to
4.2 K with the electron mobility being 20 times larger
than the hole mobility. We provide a theoretical explanation
for the data using a RPA-Boltzmann transport theory
assuming background screened Coulomb disorder as the
primary scattering mechanism. Our work conclusively
shows the dominant role of valley degeneracy in determin-
ing 2D transport through carrier screening of Coulomb
disorder and explains the main difference between the
electron and the hole conductivity as arising from the factor
of 6 difference in their valley degeneracy. In particular, we
find that the dimensionless parameter qTF=kF and not the
so-called rs parameter with rs ∼m=

ffiffiffi

n
p

controls the
strength of metallicity in the anomalous 2D metallic phase
of semiconductor systems.
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