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The ground-state energy, electron density, and related properties of ordinary matter can be computed
efficiently when the exchange-correlation energy as a functional of the density is approximated semilocally.
We propose the first meta-generalized-gradient approximation (meta-GGA) that is fully constrained,
obeying all 17 known exact constraints that a meta-GGA can. It is also exact or nearly exact for a set of
“appropriate norms,” including rare-gas atoms and nonbonded interactions. This strongly constrained and
appropriately normed meta-GGA achieves remarkable accuracy for systems where the exact exchange-
correlation hole is localized near its electron, and especially for lattice constants and weak interactions.
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Over the past 50 years, Kohn-Sham density functional
theory [1–3] has become an ab initio pillar of condensed
matter physics and related sciences. In this theory, the
ground-state electron density nð~rÞ and total energy E for
nonrelativistic interacting electrons in a multiplicative
external potential can be found exactly by solving self-
consistent one-electron equations, given the uncomputable
exact universal exchange-correlation energy Exc½n� as a
functional of n ¼ P

occ
i;σ jψ i;σj2; with ψ i;σ a Kohn-Sham

orbital. This xc energy term can be formally expressed as
half the Coulomb interaction between every electron and
its exchange-correlation hole in a double integral over
space [4,5], but in practice its density functional must be
approximated. Semilocal functionals approximate it with a
single integral and thus are properly size extensive and
computationally efficient, especially for large unit cells,
high-throughput materials searches, and ab initiomolecular
dynamics simulations.
Many features of the exact functional Exc½n� are known.

Nonempirical functionals, constructed to satisfy exact con-
straints on this density functional [6–9], are reliable over a
wide range of systems (e.g., atoms, molecules, solids, and
surfaces), including many that are unlike those for which
these functionals have been tested and validated. In this
Letter, we present a nonempirical semilocal functional that
satisfies all known possible exact constraints for the first
time, and is appropriately normed on systems for which
semilocal functionals can be exact or extremely accurate.
Semilocal approximations can be written as

Exc½n↑; n↓� ¼
Z

d3rnεxcðn↑; n↓;∇n↑;∇n↓; τ↑; τ↓Þ: ð1Þ

Here n↑ð~rÞ and n↓ð~rÞ, the electron spin densities, are the
only ingredients of the local spin-density approximation
(LSDA) [1,10–14]. Spin-density gradients are added in
a generalized gradient approximation (GGA) [6,14–19],

and the positive orbital kinetic energy densities τσ ¼P
occ
i ð1=2Þj∇ψ i;σj2 [implicit nonlocal functionals of

nð~rÞ] are further added in a meta-GGA [7–9,20,21]. The
broad usefulness of nonempirical semilocal functionals is
evidenced by the fact that the Perdew-Burke-Ernzerhof
(PBE) GGA construction Letter [6] is the 16th most cited
scholarly article of all time [22].
The LSDA was based on what we call an “appropriate

norm”: It was by construction exact for the only set of
electron densities for which it could be exact, the electron
gas of uniform spin densities (or those that vary slowly over
space). LSDAwas surprisingly useful even for solid surfaces
and atoms or molecules. But the second-order gradient
expansion [14,23], which improves upon LSDA in the
slowly varying limit, was worse than LSDA for real systems,
because LSDA satisfies exact constraints that finite-order
gradient expansions do not [4–6,24]. Nonempirical GGAs
like PBE [6] and nonempirical meta-GGAs like Tao-Perdew-
Staroverov-Scuseria (TPSS) [7] and revised TPSS [8] were
constructed to achieve higher accuracy by satisfying more
exact constraints, and the H atom was added as an
appropriate norm for the meta-GGAs. Unlike the GGAs
[18], the meta-GGAs need not choose among incompatible
constraints.
Despite early successes [25–27], the TPSS and revTPSS

meta-GGAs were less accurate than the PBE GGA for the
critical pressures of structural phase transitions of solids
[28,29]. This was due to a spurious order-of-limits problem
[30,31], which could be removed [9] if τ appeared only in
the dimensionless variable

α ¼ ðτ − τWÞ=τunif > 0; ð2Þ

where τW ¼ j∇nj2=8n is the single-orbital limit of τ and
τunif ¼ ð3=10Þð3π2Þ2=3n5=3 is the uniform-density limit.
α recognizes covalent single ðα ¼ 0Þ, metallic ðα ≈ 1Þ,
and weak ðα ≫ 1Þ bonds [32] [as does the “electron
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localization function” [33] 1=ð1þ α2Þ]. We constructed
several interpolations of the exchange energy density
[9,34,35] between α ¼ 0 and 1, with extrapolation to
α ≫ 1. These abandoned some of the exact constraints
satisfied by TPSS and revTPSS. For example, they used a
GGA correlation, which is not one-electron self-correlation
free. (Note that, in the presence of a paramagnetic current
density, meta-GGAs require a gauge correction [36].)
Here we aim to improve the nonempirical meta-GGA by

satisfying all known possible exact constraints, including
some not satisfied by TPSS and revTPSS. We also add
some appropriate norms for which semilocal functionals
can be extremely accurate although not exact: rare-gas
atoms and nonbonded interactions. Both norms contain
information about 0 < α < ∞, but the latter brings more
information about α ≫ 1. The common feature of all
appropriate norms, and a necessary condition for semilocal
approximations to be accurate, is that the exact exchange-
correlation hole for a considered density remains close to its
reference electron. This condition is not satisfied when
electrons are shared over stretched bonds, as in stretched
H2

þ. Fully nonlocal functionals, including global [37] and
local [38] hybrids with exact exchange or self-interaction
corrections [11,39], often start from a good semilocal
functional, and can better describe such bonds at increased
computational cost.
There is an expected error cancellation between semilocal

exchange and semilocal correlation, since the exact
exchange-correlation hole is deeper and more localized near
the electron than is the exact exchange hole. Localization of
the exact exchange hole for a density is thus a sufficient but
not a necessary condition for localization of the exact
exchange-correlation hole. In closed-shell atoms and non-
bonded interactions, but not in bonded molecules or jellium
surfaces, even the strongly constrained and appropriately
normed (SCAN) exchange energy is accurate.
The exchange energy for any pair of spin densities is

negative, and can be found from that for a spin-unpolarized
total density via the exact spin-scaling relation [40].
Thus, we only need to construct a meta-GGA for the
spin-unpolarized case,

Ex½n� ¼
Z

d3rnεunifx ðnÞFxðs; αÞ; ð3Þ

where εunifx ðnÞ ¼ −ð3=4πÞð3π2nÞ1=3 is the exchange energy
per particle of a uniform electron gas, Fxðs; αÞ is the
exchange enhancement factor, and

s ¼ j∇nj=½2ð3π2Þ1=3n4=3� ð4Þ
is the dimensionless density gradient. By using these
dimensionless variables, we satisfy the correct uniform
coordinate density-scaling behavior [41].
For α ≈ 1, we construct an approximate PBE-like

resummation of the fourth-order gradient expansion
(GE4) for exchange [42], valid for slowly varying densities
with small s and α ≈ 1:

h1xðs; αÞ ¼ 1þ k1 − k1=ð1þ x=k1Þ; ð5Þ
with

x ¼ μAKs2½1þ ðb4s2=μAKÞ expð−jb4js2=μAKÞ�
þ fb1s2 þ b2ð1 − αÞ exp½−b3ð1 − αÞ2�g2: ð6Þ

Here μAK ¼ 10=81, b2 ¼ ð5913=405 000Þ1=2, b1 ¼
ð511=13 500Þ=ð2b2Þ, b3 ¼ 0.5, and b4 ¼ μ2AK=k1 − 1606=
18 225 − b21. For α ¼ 0, we impose the strongly tightened
bound Fx ≤ 1.174 [43], which is satisfied by LSDA
ðFx ¼ 1Þ but not by PBE, TPSS, or revTPSS:
Fxðs; α ¼ 0Þ ¼ h0xgxðsÞ, where h0x ¼ 1.174 and

gxðsÞ ¼ 1 − exp½−a1s−1=2�: ð7Þ
As in the TPSS and revTPSS meta-GGAs, we fit the

exact exchange energy of the hydrogen atom, via
a1 ¼ 4.9479. To make the exchange energy per particle
scale correctly to a negative constant under nonuniform
coordinate scaling to the true two-dimensional limit [44,45]
(as it does not in PBE, TPSS, or revTPSS), we make Fx
vanish like s−1=2 as s → ∞ [43].
Then we interpolate Fx between α ¼ 0 and α ≈ 1, and

extrapolate to α → ∞:

Fxðs; αÞ ¼ fh1xðs; αÞ þ fxðαÞ½h0x − h1xðs; αÞ�ggxðsÞ; ð8Þ

fxðαÞ ¼ exp½−c1xα=ð1 − αÞ�θð1 − αÞ
− dx exp½c2x=ð1 − αÞ�θðα − 1Þ; ð9Þ

and θðxÞ is a step function of x. In the spirit of the
correction to a different resummed asymptotic series [46],
the interpolation or extrapolation gives no correction to
our resummed gradient expansion to any power of ∇n in
the slowly varying limit. There are three parameters
(c1x ¼ 0.667, c2x ¼ 0.8, dx ¼ 1.24) in the interpolation
or extrapolation, and one (k1 ¼ 0.065) in the resummed
gradient expansion, determined by the appropriate norms.
Figure 1 shows the SCAN exchange enhancement factor

Fx for a spin-unpolarized density as a function of reduced
density gradient s for several values of α. Not only does
SCAN obey the rigorous bound Fx ≤ 1.174 for α ¼ 0, but
it also (and more strongly) obeys the conjectured bound
Fx ≤ 1.174 for all α [35,43]. By comparison, the PBE,
TPSS, and revTPSS exchange enhancement factors all
tend monotonically to the general Lieb-Oxford bound
[47] 1.804 ¼ 2.273=21=3 as s → ∞ for all α. Thus,
SCAN is radically different from those previous semilocal
functionals.
By analogy with Fx, we can define an n-dependent

Fxc ¼ Fx þ Fc, the enhancement over local exchange
due to spin polarization, correlation, and semilocality. The
high-density spin-unpolarized limit of Fxc is of course Fx
of Eq. (3).
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The correlation energy is similarly constructed as an
interpolation between α ¼ 0 and α ≈ 1, and an extrapola-
tion to α → ∞. The α ≈ 1 limit uses a PBE-like expression
that recovers the second-order gradient expansion for
correlation in the slowly varying limit [14]. The α ¼ 0
limit shares the same formula with the α ≈ 1 limit, with its
local part designed just for one- and two-electron systems
[48]. The α ¼ 0 limit makes the correlation energy vanish
for any (fully spin-polarized) one-electron density. In the
spin-unpolarized case, it satisfies the two-electron version
of the Lieb-Oxford bound [47,48], Fxc ≤ 1.67 and fits the
exchange-correlation energy of the He atom. The SCAN
correlation energy is by construction nonpositive. It prop-
erly scales to a finite negative value per electron under
uniform density scaling to the high-density limit [44], and
to zero like the exchange energy in the low-density limit.
Its correlation energy per electron is properly finite (but
improperly zero) under nonuniform density scaling to the
true two-dimensional limit [44,45]. The interpolation has
three parameters, to be determined by the appropriate
norms. All detailed formulas, and a list of all 17 exact
constraints plus our appropriate norms, are given in the
Supplemental Material [49]. An important practical feature
of our exchange-correlation enhancement factor Fxc is that,
as functions of s, curves for different α do not cross one
another strongly (see, e.g., Fig. 1). In our experience, this
condition is needed to achieve self-consistent solutions by
the approach of Neumann, Nobes, and Handy [56].
By recovering GE4, plus the second-order gradient

expansion for correlation, we also recover a nearly exact
linear response for a uniform density [57]. Finally, we are
able to satisfy the rigorous general Lieb-Oxford bound
Fxc ≤ 2.215, as tightened by Chan and Handy [58]. This
bound is approached only in the low-density limit, where
our Fxc properly shows a weak dependence [7,12] on
relative spin polarization.
Now there are seven parameters (c1x, c2x, dx, k1, c1c, c2c,

dc) which are determined by fitting to (1) the large-Z

asymptotic coefficients [17,59] for the exchange energies
of neutral rare-gas atoms [15] of atomic number Z,

lim
Z→∞

ExðZÞ ¼ ELDA
x þ γx1Z þ γx2Z2=3; ð10Þ

(2) the large-Z asymptotic coefficient of the correlation
energy of neutral rare-gas atoms [60],

lim
Z→∞

EcðZÞ ¼ ELDA
c þ γc1Z; ð11Þ

identified as a key exact constraint for functional approxi-
mation [60], (3) the binding energy curve of compressed
Ar2 [61] [with a mean absolute error (MAE) less than
1 kcal=mol for R ¼ 1.6, 1.8. and 2.0 Å, bond lengths much
smaller than the equilibrium bond length 3.76 Å], as a
paradigm of nonbonded interaction (with Kr, another rare-
gas atom, as the united-atom limit), and (4) the jellium
surface exchange-correlation energy [18,62] at bulk density
parameters rs ¼ 2, 3, 4, and 6 bohr, within the “range of
the possible” set by two recent quantum Monte Carlo
calculations [63,64] and a kernel-corrected random phase
approximation calculation [64]. Note that the exact
exchange and correlation holes in the jellium surface have
long-range parts that cancel one another perfectly [65,66].
[In Eqs. (10) and (11), we have found the reference
coefficients γx1 ¼ −0.2259, γx2 ¼ 0.2551, γc1 ¼ 0.0388
by extrapolating accurate energies for Ne, Ar, Kr, and Xe.]
Our calculations to construct and test the SCAN meta-

GGA are described next: For the rare-gas atoms, we use
accurate Hartree-Fock orbitals [67]. For jellium surfaces,
LDA orbitals are used. Our other calculations are self-
consistent. For the Ar2 binding energy curve, we use the
GAUSSIAN code [68] with triple-, quadruple-, and quintuple-
zeta basis sets, extrapolated to the complete basis-set limit.
For other molecules, we use the 6-311þþG (3df; 3pd)
basis set. For weak interactions in the S22 set [69], we use
the counterpoise correction to reduce the basis-set super-
position error. For solids, we use the VASP code [70] with
converged plane wave basis sets and k-space meshes.
Table I shows the relative errors of SCAN for Ex, Ec, and

Exc for the rare-gas atoms, in comparison to accurate
reference values [15,35,71,72]. The errors in Ex are less
than 0.5%, but error cancellation with the much smaller Ec
leads to errors in Exc less than 0.1%. This confirms that
rare-gas atoms are an appropriate norm. The relative errors
of Ex for compressed Ar2 are 0.26%, about the same as for
a single Ar atom.
Table II shows the error statistics of SCAN and other

semilocal functionals for molecules and solids.
For the G3 set [73] of 223 molecules, including some

large organic ones, the error is by construction almost
minus the error of the atomization energy. For this set,
SCAN is much more accurate than the GGAs PBE and
especially PBEsol [18], and about as accurate as the meta-
GGAs TPSS [7] and M06 L [20]. However, M06 L has 35
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FIG. 1 (color online). The SCAN exchange enhancement factor
of Eq. (3) for a spin-unpolarized system, as a function of s (the
dimensionless density gradient) for several values of α (the
dimensionless deviation from a single orbital shape).
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empirical parameters fitted to atomization energies and
other chemical data. TPSS has no such empirical parameter,
but its complicated form was developed when atomization
energies were a gold standard, and may have been
indirectly biased by that. (The form of TPSS was compli-
cated by its use of a second dimensionless ingredient built
from τ [9,31,32], z ¼ τW=τ > 0.)
There is little statistical correlation [78] between the error

that a functional makes for atomization energies and its error
for reaction energies. (1) Most atoms that bind into mole-
cules or solids are open shell and at least partly spin
polarized, while most molecules and solids are spin unpo-
larized. (2) Most chemical reaction energies and all heats of
formation from the standard states of the elements, when
calculated ab initio, do not involve free atoms. It is
most important that the functionals should predict energy
differences among molecules and solids at fixed atomic
composition [79,80], e.g., 2H2O → 2H2 þ O2. We have
verified that SCAN is much better than TPSS or PBE for
the energy differences between the diamond and beta-tin
structures of solid Si under pressure, and we will test SCAN
for other structural phase transformations and for the heats of
formation of molecules and solids in future work.
To see that SCAN may give a more consistent description

of molecular energies than other semilocal functionals, we
define the G3HC set of 46 hydrocarbon molecules. For each
tested functional, we subtract from the energy of the partly
spin-polarized C atom the average over G3HC of the func-
tional’s error per C atom. After this correction, the MAE is
much smaller for SCAN than for any other tested functional.
The BH76 set [74] comprises 76 barrier heights for

chemical reactions (of order 0–50 kcal=mol). The barrier
arises at a transition state with long, weak bonds, and full
nonlocality can improve it substantially. Nevertheless,
SCAN gives better barrier heights than any functional in
Table II except the meta-GGA M06 L, which was partly
fitted to barrier heights.
S22 [69] is a set of 22 weak interaction energies

(hydrogen and van der Waals bonds, with equilibrium
binding energies from about 0 to 20 kcal=mol) between
closed-shell complexes. For these energies, SCAN is much
better than other functionals (and competes with M06 L,
which was fitted in part to weak interactions). We believe
that this success is related to our appropriate norming. (Of
course, no semilocal functional can capture the long-range

part of the van der Waals interaction, but SCAN captures
much of the intermediate-range part, as M06 L does.)
LC20 [75] is a set of 20 lattice constants of solids (from

3.451 to 6.042 Å). For this set, SCAN is far more accurate
than any other functional in Table II. Far less accurate is
M06 L, which was fitted to molecular data. We expected
SCAN to be accurate for lattice constants: Fuchs and
Scheffler [81] established that lattice-constant errors arise
from the region of core-valence overlap [9].
In summary, we have constructed the first meta-GGA

that satisfies all known possible exact constraints (about 6
for exchange, 6 for correlation, and 5 for the sum of the two
[49]). But there are still infinitely many ways to satisfy
these constraints. Thus, we have also satisfied appropriate
norms, for which our SCAN meta-GGA can be extremely
accurate: the energies of rare-gas atoms and nonbonded
interactions. We have not fitted to any real bonded system.
Thus, we regard our functional as a nonempirical one that
can be reliably applied to a wide range of problems unlike
those to which it was normed.
Table II suggests that SCAN is a major improvement

over PBE (and much more so over LSDA), at nearly the
same computational cost. In future work, we will further
explore the possibilities and limitations of SCAN, which
we suspect are close to those of the semilocal form, Eq. (1).

This work was supported by NSF under Grant
No. DMR-1305135 (J. P. P., J. S., and A. R.). We thank
the Center for Computational Science (Tulane) for com-
puter time.

TABLE I. Relative errors (%) of SCAN for the exchange,
correlation, and exchange-correlation energies of the rare-gas
atoms.

Ne Ar Kr Xe

Ex 0.46 0.25 0.19 0.07
Ec −11.80 −4.49 −5.07 −3.36
Exc 0.07 0.14 0.09 0.01

TABLE II. Mean error (ME) and mean absolute error (MAE) of
SCAN and other semilocal functionals for the G3 set of
molecules [73], the BH76 set of chemical barrier heights [74],
the S22 set of weakly bonded complexes [69], and the LC20 set
of solid lattice constants [75]. For the G3-1 subset of small
molecules, the SCAN MAE is 3.2 kcal=mol. G3HC is a subset of
46 G3 hydrocarbons, to which we have applied empirical
corrections for the C atom as described in the text to show
how consistently SCAN describes molecules. For all data sets,
zero-point vibration effects have been removed from the refer-
ence experimental values. The LSDA results for G3 are from
Ref. [25]. Becke-Lee-Yang-Parr (BLYP) [15,76], PBEsol [18],
and PBE [6] are GGAs; SCAN, TPSS [7], and M06 L [20] are
meta GGAs. We could not locate BLYP in VASP, but Ref. [77]
suggests that its LC20 MAE may be more than twice that of PBE.
(1 kcal=mol ¼ 0.0434 eV.)

G 3HC

(kcal/mol)
G3

(kcal/mol)
BH76

(kcal/mol)
S22

(kcal/mol) LC20(Å)

ME MAE ME MAE ME MAE ME MAE ME MAE

LSDA −5.6 13.0 −83.7 83.7 −15.2 15.4 2.3 2.3 −0.081 0.081
BLYP 1.8 6.2 3.8 9.5 −7.9 7.9 −8.7 8.8
PBEsol −4.1 6.5 −58.7 58.8 −11.5 11.5 −1.3 1.8 −0.012 0.036
PBE −2.1 6.6 −21.7 22.2 −9.1 9.2 −2.8 2.8 0.051 0.059
TPSS 1.9 3.8 −5.2 5.8 −8.6 8.7 −3.7 3.7 0.035 0.043
M06 L −0.2 4.6 −1.6 5.2 −3.9 4.1 −0.9 0.9 0.015 0.069
SCAN −0.8 2.7 −4.6 5.7 −7.7 7.7 −0.7 0.9 0.007 0.016
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