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We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field
component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical
reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse
generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO
oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption
process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field
component of the THz pulse, rather than thermal heating of the surface.
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When chemical bonds break or form during catalytic
reactions on metal surfaces, the rearrangement of these
bonds proceeds through the excitations of nuclear motions
along the reaction coordinate. The dynamics of these
excitations, which include phonons in the substrate as
lattice vibrations, and various translational and rotational
vibrational motions of adsorbed reactants, occur on 10 fs to
sub-ps time scales [1–9]. When these motions are thermally
excited, energy is rapidly dissipated into all the nuclear
degrees of freedom. The reaction then proceeds down all
the potential reaction coordinates, leading to a distribution
of final products. Tuning of the geometric and electronic
structure of catalytic material can push the chemical
reaction towards certain directions. As the reactants and
intermediates have opposing dependences on reactivity
with respect to bond strength at the active sites, there is
a limit to the degree of selectivity [10].
The addition of an external driving force has been

explored to enhance the selectivity beyond these limitations
of catalytic materials. Strong electric fields above 1 V=nm
have been used to induce field desorption of ions, atoms,
and molecules from surfaces [11,12], and the field induced
processes have been used to initiate and characterize
catalytic reactions [13]. Individual atoms and molecules
can be manipulated on surfaces using localized electric
fields with scanning tunneling microscopy (STM) [14].
More recently, calculations have shown that strong external
electric fields perpendicular to the surface and of the same
order of magnitude (1 V=nm) as used in this study have the

potential to push or pull an entire layer of water molecules
adsorbed on Au by as much as 0.5 Å [15]. It has been
suggested that such effects can be enhanced at protrusions
in the surface, such as step sites, where the electric fields
can be enhanced by as much as a factor of 5 [16]. Other
calculations have shown that when an external electric field
interacts with a metal surface, the electrons in the con-
duction bath will migrate towards or away from the surface,
depending on the polarization of the electric field [16,17].
One of the key challenges in chemical reactivity is

selectivity, where the desired reaction channel is enhanced
in comparison to other competing channels. CO desorption
and CO oxidation on the coadsorbed phase of CO and
O on Ru(0001) have been extensively studied using thermal
excitations and femtosecond optical laser pulses [1,18–20].
Exposure of O on Ru(0001) to gaseous CO above 400 K
produces CO2 [20]. However, with thermal excitation
under ultrahigh vacuum conditions, the coadsorbed phases
of CO and O on Ru(0001) is not an active for CO oxidation,
in which only CO desorption being stimulated at a temper-
ature of 370 K [21,22]. When the system is excited through
electron-hole pair creation by a femtosecond optical laser
pulse, both CO desorption and CO oxidation occur [1]. The
hot electrons created by the femtosecond laser pulse
transfer energy to the O atoms [6]. The hot electrons
eventually cool down, resulting in an electronically ground
state O atom with an excess of vibrational energy, i.e.,
nuclear motion. The excited nuclear motions allow the O
atoms to move more freely on the surface, leading to
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collisions with the CO molecules in the transition states
with the subsequent formation of CO2 [9]. The femto-
second optical laser reaction selectivity for CO oxidation is,
however, small at only ∼3% compared to CO desorption
with near-infrared excitation [1].
In the present study, we utilized quasi-half-cycle, ultra-

short, intense THz pulses with an electric field component
on the order of 1 V=nm to stimulate the nuclear motions
of the adsorbates in order to direct a chemical reaction. We
investigated the coadsorbed phase of CO and O on a
Ru(0001) surface. We demonstrate that an ultrashort, quasi-
half-cycle THz pulse with a strong electric field strength
can drive the reaction solely towards CO oxidation to
produce CO2. This is in contrast to femtosecond optical
laser excitation, which leads to both CO desorption and CO
oxidation with CO desorption being the favored pathway,
and heating, which results only in pure CO desorption [1].
We used a quasi-half-cycle, broadband THz pulse with

peak fields of ∼1 V=nm (10 MV=cm) and a peak frequency
of 10 THz to induce CO oxidation on the coadsorbed phase
of CO and O on Ru(0001) in ultrahigh vacuum (UHV) at a
temperature of 300 K; see the Supplemental Material [23].
At room temperature, a saturated layer of CO and O on
Ru(0001), CO=O=Ruð0001Þ, has a 2∶1 ratio of 0.5 mono-
layer coverage (ML) O and 0.25ML CO, which consists of a
mixture of two domains. One domain consists of hollow site
O in a honeycomb (2 × 2) lattice and on-top site CO, the
other consists of hollow site O in a pð2 × 1Þ lattice and
asymmetric on-top site CO [21,22]. The sample was exposed
to an average of 95 pulses of THz radiation at 20° surface
grazing angle. The THz pulse was generated using coherent
transition radiation from an ultrashort relativistic electron
bunch at the Linac Coherent Light Source (LCLS) at the
SLAC National Accelerator Laboratory [24–26]. The elec-
tric field of these THz pulses has both transverse and
longitudinal components at the focus due to the radial
polarization of the pulse. The applied electric field generates
a polarization within the sample which then screens the
applied field. The electric field vectors perpendicular to the
surface will interact differently with the surface than with
electric field vectors parallel to the surface. An electric field
vector perpendicular to the surface with a peak frequency of
10 THz will decay within the first few tens of nanometers
into the substrate [27,28]. The surface layer will be affected
by the presence of the external electric field, with shifts in the
electronic densities either towards or away from the surface
atoms. This can cause partial ionization of surface metal
atoms, or other atoms adsorbed on the surface. In contrast, it
is expected that an electric field parallel to the surface will
not shift the electron density towards or away from the
surface atoms, but will instead induce instantaneous surface
currents.
Here we use temperature programmed desorption (TPD)

to titrate both the coverage and binding site of CO due to
THz radiation. First, we evaluated the THz-induced CO

desorption reaction on CO=Ruð0001Þ, a surface containing
a saturated coverage of pure CO in a (2

ffiffiffi
3

p
× 2

ffiffiffi
3

p
)

configuration (0.66 ML). Figure 1 shows the TPD traces
before and after THz irradiation contain the CO
(2

ffiffiffi
3

p
× 2

ffiffiffi
3

p
) configuration, indicating that no CO was

desorbed.
The reaction yield for CO oxidation was determined by

measuring the THz-induced surface coverage loss of
CO and O. To determine the surface coverage loss, we
quantified the surface coverages of CO and O before and
after the THz irradiation using TPD. Figure 2 shows a CO
TPD trace before THz irradiation and a series of two CO
TPD traces following THz irradiation that were used to
determine the CO and O coverages. The CO2 that is formed
from reacting CO and O adsorbates immediately desorbs,
as the CO2 desorption temperature on Ru(0001) is 100 K
[29]. In Fig. 2, we compare the CO TPD traces of a
saturated CO=O=Ruð0001Þ surface before THz irradiation
(a) and the first CO TPD measurement following THz
irradiation (b). From this, we deduce that about a third of
the CO is desorbed from the surface. This results in a
remaining CO coverage of 0.17� 0.01 ML. During THz-
induced CO oxidation, both CO and O are depleted from
the surface to produce CO2. The CO and O removed from
the surface open up islands of vacancies, which was
confirmed by the desorption profile of readsorbed CO
on these vacancies. Following the first CO TPD after THz
irradiation, we redosed 10 L of CO onto the surface at 300 K
and recorded another CO TPD to measure the amount of
adsorbed O after THz irradiation. The desorption profile of
readsorbed CO differs from that of CO=O=Ruð0001Þ, but

FIG. 1 (color online). CO temperature programmed desorption
traces of CO=Ruð0001Þ before and after THz radiation. No CO
desorption was induced by THz radiation.
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resembles that of pure CO adsorbed into islands [21].
By comparing the CO TPD trace to the known CO TPD
dependence on O coverage, we found that ∼16% of the O
desorbed from the surface, resulting in a final coverage of
0.42� 0.01 ML. Similar amounts of CO and O are removed
from the surface following THz irradiation, 0.08� 0.01 and
0.08� 0.01 ML, respectively. That is, that they are removed
from the surface with a one-to-one stoichiometric ratio,
strongly supporting the conclusion about the formation
of CO2.

This shows that THz irradiation deposits the energy
selectively into the O atoms to induce CO oxidation. If the
energy was instead deposited into the CO molecules or
Ru(0001) substrate, CO desorption would occur. In pre-
vious experiments with optical lasers, there was no detect-
able CO desorption at the rather small absorbed fluence of
2 J=m2 used in the present experiment [8,30].
These conclusions are further supported by the two-

temperature model and empirical friction calculations. We
computed the electron, phonon, and adsorbate temperatures
using the methods and material parameters described in
Ref. [8]. We obtained an increase of the phonon temper-
ature by 23 K, whereas for the electron system a temper-
ature jump of 370 K for the Ru(0001) surface after
absorption of the THz pulse. The computed temperature
of the adsorbate system went up by 70 to 370 K, which is
slightly above the desorption temperature of CO adsorbed
onto Ru(0001). Because of the short lifetime of the
adsorbate excitation [2,7], the temperature in reactions
induced by femtosecond laser pulses typically has to be
far above the thermal desorption temperature for a sub-
stantial reaction yield [6,8,30]. For the present conditions
we computed a desorption yield in the range of 10−15 ML
per THz pulse, which is negligible and will not lead to any
detectable CO desorption, in agreement with our exper-
imental result. As it has been shown that the femtosecond
temperature-induced reaction yield for CO oxidation is
lower than for CO desorption [1], we can therefore
conclude that the THz-induced CO oxidation presented
here is not a result of the THz-induced surface temperature
rise, but another mechanism is required to explain the
observed THz induced CO oxidation.
Since CO oxidation is stimulated, but not CO desorption,

the O has to be activated selectively by the THz pulse. In
the following, we will discuss the plausible mechanism for
this selective excitation. The intense electric field of the
THz pulse induces a strong polarization in the electronic
bath at the surface [16]. For the duration of the THz pulse
(<70 fs), the conduction electrons will be both polarized
towards the surface, increasing the electron density, and
polarized away from the surface, decreasing the electron
density, depending on the sign of the electric field vector.
When the electron density of the topmost layer is increased
due to a polarization towards the surface, the conduction
electrons will migrate to previously unoccupied states. On
Cu(100), a migrating charge of up to 0.34e− has been
estimated under the exposure to an external electric field
of 8 V=nm [16]. In Fig. 3, the electronic structure of the
Ru─O and Ru─CO bonds are schematically shown, indi-
cating the difference in nature of the states close to the
Fermi level. In the case of O on transition metals, the
energy position of the metal-O antibonding orbital located
near the Fermi level dictates the bond strength [31]. When
the electron density is polarized towards the surface,
conduction electrons can transfer to the Ru─O antibonding

FIG. 2 (color online). CO temperature programmed desorption
traces of CO=O=Ruð0001Þ: (a) before THz irradiation; (b) after
THz irradiation; (c) after THz irradiation and redosed with a CO
to form a saturated CO layer. The ratio between (a) and (b)
measures the decrease in CO coverage after THz irradiation. In
(c), the desorption peak for redosed CO appears at the high-
temperature side, 380–430 K, which is assigned to the desorption
of CO from O depleted regions. No CO desorption was found
above 450 K.
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orbital, which will weaken the Ru─O bond, increasing the
bond distance [Fig. 4(a)]. This will occur on a time scale on
the order of the Ru─O vibration, ∼50 fs. After interaction
with the THz pulse, the electron bath will return to an
unpolarized state and the electron will migrate back to the
conduction electron bath, leading to vibrationally excited O
atoms [Fig. 4(b)]. These excited O atoms will gain addi-
tional translational energy on the surface to react with CO
to form CO2. Whereas the Ru─O bond near the Fermi level
has antibonding character, the Ru─CO bond has non-
bonding character [32,33] and occupation of these states
will have minimal impact on the Ru─CO bond.
One might expect all of the CO molecules to react, but

the maximum observed reaction efficiency for CO oxida-
tion suggests that a third of the CO molecules participate in
the reaction. As the surface contains mixed domains of
CO and O coadsorbed phases, the THz induced reaction
would be specific to the local arrangement of reactants
[21,22]. As it is observed in thermal catalysis, the THz
induced reaction could also preferentially occur at the
boundary between the two domains [34]. As the O cover-
age decreases on the surface after THz exposure there will
be more stable adsorption sites available for CO [21],
making it less likely to react. Additionally the CO and O
adsorbates will collide less frequently at lower coverage,
which further limits the reaction yield.
We have selectively directed the oxidation of CO on Ru

(0001) by using coherent THz radiation from an ultrashort
electron bunch. The distinct nature of bond character
between Ru─O and Ru─CO allows the strong electric
field of THz radiation to activate the Ru─O bond selec-
tively. This mechanism steers the reaction towards the
oxidation, whereas the CO desorption dominates in thermal
and optical laser stimulated reactions. These results dem-
onstrate the use of strong and ultrashort electric fields to
selectively drive reactions at metal surfaces for hetero-
geneous catalysis.
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