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In this Letter, we consider a liquid mixture confined between two thermally conducting walls subjected
to a stationary temperature gradient. While in a one-component liquid nonequilibrium fluctuation forces
appear inside the liquid layer, nonequilibrium fluctuations in a mixture induce a Casimir-like force on the
walls. The physical reason is that the temperature gradient induces large concentration fluctuations through
the Soret effect. Unlike temperature fluctuations, nonequilibrium concentration fluctuations are also
present near a perfectly thermally conducting wall. The magnitude of the fluctuation-induced Casimir force
is proportional to the square of the Soret coefficient and is related to the concentration dependence of the

heat and volume of mixing.
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When large and long-range fluctuations are present, they
will induce forces in confined fluids [1]. These are
commonly referred to as Casimir-like forces in analogy
to forces induced by vacuum fluctuations between two
conducting plates [2,3]. A well-known example is the
Casimir force induced by critical fluctuations in fluids
[4-7]. Apart from critical systems, long-range correlations
also exist in equilibrium systems with Goldstone modes [1]
and in many nonequilibrium systems, where even longer-
range correlations can exist [§—11].

In this Letter, we consider a liquid mixture in a non-
equilibrium steady state (NESS) between two parallel
thermally conducting plates subjected to a uniform temper-
ature gradient VT'. In a liquid mixture a temperature gradient
induces large concentration fluctuations through the Soret
effect [12,13]. These nonequilibrium concentration fluctua-
tions vary with the 4th power of the inverse of the wave
number k of the fluctuations, just as the nonequilibrium
temperature fluctuations in a one-component fluid [8,14].
However, there is a principal difference between the Casimir
pressures induced by nonequilibrium concentration fluc-
tuation and those induced by nonequilibrium temperature
fluctuations. In thin fluid layers, fluctuations not only may
induce a force on the walls, but also may introduce an
effective potential inside the fluid layer causing a modifi-
cation of the density or composition profile [15]. While in a
one-component fluid nonequilibrium fluctuations induce the
latter phenomenon yielding a rearrangement of the density
profile [16], the purpose of the present Letter is to demon-
strate that nonequilibrium concentration fluctuations induce
an actual Casimir pressure on the walls directly.

It is well known that in considering the dynamics of
fluctuations around thermal equilibrium, nonlinear terms in
the hydrodynamic equations serve to renormalize various
terms in the linearized hydrodynamic equations [17-24].
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Here we show that in a NESS the nonlinear terms cause a
most important renormalization of the nonequilibrium (NE)
pressure or normal stresses in a binary fluid. To determine
the nonequilibrium induced pressure in a liquid mixture,
we need to consider the pressure p as a function of the
fluctuating conserved quantities, which are the fluctuating
energy density e + de, the fluctuating mass densities
p1+ 0py, and p, + dp, of components 1 (solute) and 2
(solvent). As in the case of a one-component fluid, we can
neglect the fast propagating sound modes and, hence, the
linear fluctuation contribution to the pressure [16].
Applying a Taylor expansion to the pressure then yields
a contribution quadratic in terms of de, dp;, and op,:

ple +de.py +8p1.py +6py) — ple.pr.pa)
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with a = (e, py,p,). In a liquid mixture there are two
diffusion modes that are linear combinations of heat
diffusion and mass diffusion [12,25]. An important param-
eter for dealing with fluctuations in liquid mixtures is the
Lewis number, which is the ratio of thermal diffusivity Dy
and mutual mass diffusivity D: Le = Dy/D. In liquid
mixtures this Lewis number is commonly larger than unity.
Hence, in dealing with fluctuations in liquid mixtures one
often adopts a large-Lewis-number approximation [10]. For
large values of the Lewis number, these diffusion modes
decouple into a pure temperature fluctuation mode with a
decay time proportional to D7!' and a concentration
fluctuation mode with a decay time proportional to D~!
[26]. Hence, to get the slowest fluctuation mode contribu-
tion for Le > 1, we not only may neglect linear pressure
fluctuations, but also linear temperature fluctuations.
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For the concentration variable we adopt the mass fraction
of the solute w=p,/p with p=p, +p, being the
mass density of the mixture. At constant p and T,
de,op0p, are related to the concentration fluctuations
ow by de = (Je/Ow), 16w, op; = (Op1/Ow), 76w, dp, =
(Opy/0w), row. We then obtain from Eq. (1) for the
average NE contribution p{p(r) at a position r=
{x,y,z} to the equilibrium pressure p in terms of e, p, w

(), G, (), (6)
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where the superscript w indicates that p{(r) is a Casimir
pressure induced by concentration fluctuations. We note
that only the NE concentration fluctuations ([6w(r)]?)ng
cause a renormalization of the pressure, since the equilib-
rium concentration fluctuations are already incorporated
in the unrenormalized pressure. Just as for the case of a
one-component fluid [16], the NE pressure can be obtained
from an explicit mode-coupling theory generalized to
NESS, which justifies the approach adopted above.
Relevant thermodynamic relations, associated with the
hydrodynamic modes in a mixture, can be found in an
article of Wood [25]. Noting that the thermodynamic field
conjugate to the mass fraction w is the difference between
the specific chemical potentials of the solute and the
solvent, u = p; — p,, we can transform Eq. (2) into

PRe(r) = —% {){ ' T@é{;)
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where a = —p~1(9p/0T) pw i the thermal expansion
coefficient, ¢, ,, the isobaric specific heat capacity, y =
Cyw/Cpy the ratio of the isochoric and isobaric heat
capacities, and y = (Ow/0u), r an osmotic susceptibility.
This osmotic susceptibility can be related to the molar
excess Gibbs energy [27] and, hence, its temperature and
pressure derivatives to the excess molar enthalpy HF and
the excess molar volume VZ, so that

it == i
1), (35).
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where M| and M, are the molar weights of the solute and
solvent, respectively, M = M x; + (1 — x;)M, the molar
weight of the mixture, and x; the mole fraction of the solute.

The intensity of the NE concentration fluctuations
{[6w(r)]?)Ng can be obtained by solving appropriate fluc-
tuating hydrodynamics equations [10,28,29]. We consider a
liquid mixture subjected to a stationary temperature gradient
VT confined between two horizontal thermally conducting
plates located at z = £L/2 in the coordinate direction
perpendicular to the plates. Such a temperature gradient
induces a stationary concentration gradient Vw=
—w(1—=w)S;VT, where Sy is the Soret coefficient [12,13].
A procedure for solving the fluctuating hydrodynamic
equations to obtain the intensity of the NE concentration
fluctuations has been developed by two of us, but with
artificial boundary conditions for the fluctuations at the walls
adopted for mathematical convenience [29]. It turns out that
exactly the same procedure can be used to obtain the solution
for the intensity of the NE concentration fluctuations which
satisfies physically realistic boundary conditions, namely, a
rigid-boundary condition for the wall-normal velocity fluc-
tuations, 6v, = dév,/dz = 0 [30], and the condition of no
mass flux through the boundaries, déw/dz =0, at
z=+L/2, for Le > 1. The solution ([sw(r)]*)yg for the
intensity of the NE concentration fluctuations and, hence, for
the NE Casimir pressure pz(z), only depends on the height
z in the liquid layer. While the solution for arbitrary values of
z is rather complicated, the important new result is that we
have obtained a simple expression for the concentration
fluctuations at the walls:

— L\1? — ksT 2¢2 2
(5)
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(6)
where kg is Boltzmann’s constant and v is the kinematic
viscosity. In Eq. (6) ¢ = kL, where k|| is the magnitude of
the component of the wave vector k of the fluctuations
parallel to the plates [29]. A derivation of the intensity of the
NE concentration fluctuations, given by Egs. (5) and (6), can
be found in [31]. Substitution of Eq. (5) into Eq. (4) yields
for the NE Casimir pressure plp(z = £L/2) exerted on the
walls:
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It has been verified experimentally that approximating the
thermodynamic and transport properties in Eq. (5), and
hence in Eq. (7), by their average values in the center of the
liquid layer reproduces the intensity of the nonequilibrium
fluctuations to within 1% at temperature differences up to
AT = 40 K between two plates [27,32]. We note that for a
given temperature gradient V7', the Casimir pressure exerted
on the walls increases with the distance L between the
plates, indicating that we are dealing with a giant, i.e.,
surprisingly large, Casimir effect [33]. The physical reason is
that the NE correlations diverge as k~*, which means that in
real space the correlations scale with the system size L.
While there exists an extensive literature on long-range
correlation in NESS, we emphasize that only NE temper-
ature and NE concentration fluctuations cause such a
dramatic effect [8,10]. Physically, it may be more practical
to study the NE Casimir pressure as a function of the
distance L for a given temperature difference AT between
the plates so that VT = AT/L. It then follows from Eq. (7)
that py; will be proportional to L~'(AT/T)?. In principle
DR 1s also affected by gravity. However, it is expected that
this effect will be minor except when the mixture is close to a
hydrodynamic instability [16].

It is interesting to compare the Casimir pressure induced
by NE concentration fluctuations with a Casimir pressure
induced by NE temperature fluctuations in a one-
component fluid [16]. In analogy to Eq. (4), that result
can be written as

i |G), 2 )|
< ([6T ()% ne- (3)

where £ is the specific enthalpy and v the specific volume.
While Egs. (4) and (8) look very similar, there is a
fundamental difference between the two. In contrast to
Eq. (7), Eq. (8) implies

pI(IE(Z) =

(=5 =0 ©)

since at a thermally conducting wall 67 = 0. Hence, the
Casimir pressure ply induced by NE temperature fluctua-
tions appears in the inside of the fluid layer, causing a
rearrangement of the density profile [16], and exerting a
pressure on the thermally conducting walls indirectly. Hence,
we only quoted finite values for (ply), averaged over the
height of the fluid layer in previous publications [16,33]. We
note that in the dilute-gas limit ply vanishes for any value
of z.

To understand the implications of Eq. (7), we may
envision a configuration where a (thin) plate with temper-
ature T, is located in a liquid mixture between two walls,
both with a temperature 7, as schematically illustrated in
Fig. 1. When pyy > 0, the liquid mixture will exert NE

(Z(leTz)2 a(TfLTz)z
T, : Tz ' T,
L2 L1

FIG. 1 (color online). Schematic illustration of Casimir pres-
sures pyg > 0, induced by NE concentration fluctuations on a
plate with temperature 7, located in a liquid mixture between
walls with temperature 7. For pyp <0, the plate would be
pulled to the closest wall.

Casimir pressures on the two sides of the inner plate
proportional to (AT)?/L, and (AT)?/L,. When L, # L,,
the plate will experience a net force causing it to move to the
center of the liquid mixture layer. Hence, the force needed to
move this plate off center would be a measure of the Casimir
force induced by the NE concentration fluctuations. In
practice it may be difficult to maintain plates at a close
distance parallel to each other [3,34,35] and one may want to
replace the plate by a particle. While a geometrical analysis
of such a configuration becomes more complicated [5,15],
the physical principle remains the same.

In Table I we present some order-of-magnitude estimates
for the pressure pY; induced by NE concentration fluctua-
tions and compare the values with those for the original
Casimir pressure p.,, originating from electromagnetic
fluctuations in vacuum [2], and with the critical Casimir
pressure p,. [4,7]. The Casimir pressures induced by NE
concentration fluctuations are much larger, than either p.,, or
p.. Table I also shows that pyg can be either positive or

TABLE I. Estimated Casimir pressures.

L=10"%m L=10"*m
Pem” —-1x102%Pa —1x107"" Pa
. —-6x10#Pa  —6x10"1"Pa
plg  toluene + n-hexane® +2x 107! Pa 42 x 1073 Pa
ply  1-methylnaphtalene +9 Pa +0.9 x 107!

+n-heptane*

ple  aniline + methanol® -3 x107' Pa -3 x 1073 Pa

*Refs. [2,16].
*Ref. [16].
“Equimolar mixture, T = 298 K, AT =25 K.
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negative, essentially depending on whether the concentration
dependence of the heat of mixing is convex or concave.

Some authors have proposed NE Casimir forces induced
by long-range fluctuations that originate from the spatial
dependence of the noise correlations associated with the
local fluctuation-dissipation theorem in the presence of a
gradient [36,37]. However, for fluids it has been found that
these NE correlations are insignificant compared to the NE
correlations caused by a coupling between hydrodynamic
modes in NE states considered here [38].

Since, in contrast to the Casimir pressure pl induced by
NE temperature fluctuations, the Casimir pressure py\p
induced by NE concentration exerts a direct force on the
walls confining the liquid layer, we believe that the Casimir
pressure induced by NE concentration fluctuations is a
promising candidate for an initial attempt to detect the
phenomenon experimentally. As can be seen from Eq. (7),
the effect can be enhanced by selection of a mixture with a
small diffusion coefficient D and a large Soret coefficient
Sr. This is the principal reason why in Table I p{p of
1-methylnaphtalene+n-heptane with S;=1.73x107>K"!
[39] is much larger than in toluene + n-hexane with
Sy =0.32 x 1072 K~ [40]. The validity of linear non-
equilibrium fluctuating dynamics for the NE temperature
and NE concentration fluctuations has been confirmed
experimentally both by light scattering [12,12,32] and by
shadowgraph experiments [41]. Experimental evidence for
the existence of a NE Casimir pressure would provide
evidence for the validity of nonequilibrium nonlinear
fluctuating hydrodynamics.

We note that similar NE concentration fluctuations and,
hence, NE Casimir forces, will also be present in liquid
films with an isothermal concentration gradient or chemi-
cal-potential gradient [10,42—44]. Hence, this kind of NE
Casimir force may be ubiquitous in nature.
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