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We observe the propagation dynamics of surface gravity water waves, having an Airy function envelope,
in both the linear and the nonlinear regimes. In the linear regime, the shape of the envelope is preserved
while propagating in an 18-m water tank, despite the inherent dispersion of the wave packet. The Airy wave
function can propagate at a velocity that is slower (or faster if the Airy envelope is inverted) than the group
velocity. Furthermore, the introduction of the Airy wave packet as surface water waves enables the
observation of its position-dependent chirp and cubic-phase offset, predicted more than 35 years ago, for
the first time. When increasing the envelope of the input Airy pulse, nonlinear effects become dominant,
and are manifested by the generation of water-wave solitons.
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In 1979, in the framework of quantum mechanics, the
Airy wave packet was shown to be a solution of the
Schrödinger equation for a free particle [1]. This wave
packet exhibits peculiar features—acceleration without any
external force, and shape preservation in a dispersive
medium. In 2007, Christodoulides et al. implemented these
concepts in optics, by showing that an ideal Airy optical
beam follows a bent parabolic trajectory in free space and
remains diffraction free [2]. Research on Airy beams has
become very intense in recent years, and many potential
applications involving Airy beams have already been
demonstrated, including optical manipulation of micro-
particles [3], generation of curved plasma channels [4],
light induced optical routing [5], and superresolution
fluorescence imaging [6]. Airy light pulses have also been
demonstrated in the time domain, and have been used to
form light bullets [7,8], which overcome both diffraction
and dispersion during propagation. Apart from these
studies on the linear case, the nonlinear optical generation
[9] and the evolution of Airy beams in various nonlinear
quadratic [10,11], cubic [11], and photorefractive [12]
media have been studied. Solitons off-shooting from
Airy pulses [13] and Airy beams [14] in strong Kerr
focusing nonlinearity have been theoretically predicted,
but have not been observed experimentally up till now.
The concept of self-accelerating Airy beams has been

extended beyond light waves, leading to the prediction [15]
and the subsequent realization of Airy surface plasmon
polariton beams [16–18], as well as the experimental
generation of electron Airy beams [19].
It is interesting to note that all measurements of Airy

waves have so far concentrated on the shape of the wave’s
envelope, while disregarding the phase, possibly owing to
the difficulty in directly measuring the carrier phase of
these high frequency wave packets [20]. The phase
dependence of the Airy wave function was already

theoretically predicted in the original paper [1] more than
35 years ago. It includes a phase term that is a product of
the propagation and temporal coordinates, and an offset
term that is proportional to the third power of the propa-
gation coordinate. This phase dependence had not been
observed experimentally so far.
Wave propagation dynamics in optics in many aspects is

analogous to that of water gravity waves; both phenomena
share similar physics, as discussed in relation to the
appearance of so-called “rogue” waves [21]. In this
Letter, we take advantage of the analogy between optics
and water-wave theory to investigate the Airy pulse
propagation in a wave tank for the first time (underwater
Airy beams were recently realized [22]). This allows us to
study the previously inaccessible properties of the Airy
pulse, both in the linear and the nonlinear regimes.
Zakharov [23] derived a general equation describing the

temporal evolution of deep-water gravity waves in Fourier
space at the 3rd order in the characteristic wave steepness
ε ¼ k0a0, where k0 and a0 are the characteristic wave
number and amplitude. In the same paper, invoking the
narrow spectrum approximation, the so-called nonlinear
Schrödinger equation was derived for the complex wave
envelope aðx; tÞ. Dysthe [24] suggested a 4th order
modification of the nonlinear Schrödinger equation by
relaxing the requirement of vanishing spectral width.
Following Refs. [25–27], the spatial version of the
Dysthe equation in normalized form is given by
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The scaled dimensionless variables are related to physical
units according to ξ ¼ ðγεÞ2k0x, τ ¼ γεω0ðx=cg − tÞ,
A ¼ a=a0, Φ ¼ ϕ=ðω0a20Þ, and Z ¼ γεk0z. Here, x and z
denote the propagation and vertical coordinates, respec-
tively, z ¼ 0 at the free surface, t is the real time, and γ is a
scale factor, introduced to assure conformity between the
optical and the hydrodynamic formulations. The wave
number k0 ¼ 2π=λ0, where λ0 is the carrier wavelength.
The angular frequency ω0 satisfies the deep water
dispersion relation ω2

0 ¼ k0g, where g is the acceleration
due to gravity. The water-wave group velocity cg ¼
dω=dk ¼ ω0=2k0. A is the normalized group envelope.
The water velocity potential ϕ satisfies ∂Φ=∂Z ¼ ∂jAj2=∂τ
(for Z ¼ 0), and ∂Φ=∂Z ¼ 0 (for Z ¼ −∞).
In this work, we study first the propagation dynamics of

low amplitude Airy water-wave pulses, described by the
linearized governing equation. Higher amplitude nonlinear
pulses are considered at a later stage.
Retaining linear terms only in Eq. (1) yields [27]

∂A
∂ξ þ i

∂2A
∂τ2 ¼ 0: ð2Þ

As is known, Eq. (2) admits an ideal solution with the Airy
form [1,2]: Aðξ; τÞ ¼ Aiðτ − ξ2Þ exp½−iτξþ ð2i=3Þξ3�.
Here, Ai stands for the Airy function. At ξ ¼ 0,
Aðξ ¼ 0; τÞ ¼ AiðτÞ ¼ Aið−t=tsÞ, where ts determines
the size of the Airy main lobe and, hence, the acceleration.
Comparison of the definition of τ in optics and water-wave
theory leads to the relation ts ¼ 1=ðγεω0Þ. It is seen from
the solution that the pulse Aðξ; τÞ preserves its Airy shape
while propagating along ξ and follows a parabolic trajec-
tory described by

tðxÞ ¼ x=cg þ νk20x
2=ðω4

0t
3
sÞ; ð3Þ

where ν ¼ �1. At ν ¼ 1 (−1), tðxÞ describes the trajectory
of the Airy pulse (time-inverted Airy pulse). Ideal Airy
water-wave pulses carry an infinite amount of energy,
whereas in practice these pulses should be truncated by
an exponential or a Gaussian window [2]. Here, exponen-
tial truncation is used; thus, the initial condition is written
as Aðx ¼ 0; tÞ ¼ Aiðt=tsÞ expðαt=tsÞ, where α is positive.
Truncated Airy pulses evolve according to [2]

Aðξ; τÞ ¼ Aiðτ − ξ2 − i2αξÞ
× expðατ − 2αξ2 − iτξ − iα2ξþ i2

3
ξ3Þ: ð4Þ

The experiments were performed in an 18 m long, 1.2 m
wide, and h ¼ 0.6 m deep laboratory wave tank. Waves are
excited by a computer controlled paddle-type wave maker
placed at one end of the water tank. A wave energy
absorbing beach is placed at the other end. To eliminate
the effect of the beach, measurements were limited to
distances not exceeding 14 m from the wave maker. The

instantaneous water surface elevation at any fixed location
along the tank is measured by four wave gauges mounted
on a bar that is parallel to the tank side walls. The bar with
the gauges is fixed to an instrument carriage that can be
shifted along the tank and is controlled by the computer.
The temporal surface elevation of the Airy pulse at the
wave maker has the following form:

ηðt; x ¼ 0Þ ¼ a0AðtÞ cosðω0tÞ; ð5Þ
where the maximum value of AðtÞ at x ¼ 0 is normalized to
unity so that a0 is the maximum amplitude of the envelope.
In the experiment λ0 ¼ 0.76 m, so that the dimensionless
depth k0h ¼ 4.96 > π, satisfying the deep water condition
[28]; the corresponding group velocity is cg ¼ 0.54 m=s.
As discussed in Ref. [28], for the selected carrier wave-
length the dissipation is weak and can be neglected.
According to Eq. (4), in the linear approximation, the

Airy pulse should preserve its shape while propagating
along the wave tank. We confirm this assertion with the
measurements shown in Fig. 1, illustrating the evolution
dynamics of the Airy pulses. Both the experimental and
theoretical results indicate that the Airy shape is preserved
well during evolution along the tank.
The features of Airy pulses such as nonspreading and

self-acceleration are more difficult to observe with large ts
in our tank due to its limited length; hence, to demonstrate
those properties smaller values were selected. Figure 2
demonstrates the weakly spreading feature of the Airy
pulses during propagation in the water tank, with
ts ¼ 1.2 s. To illustrate the property, a comparison between
spreading of Airy and Gaussian pulses was made. As
expected, the Airy pulse envelopes remain almost non-
spreading, as shown in Figs. 2(a)–2(c) experimentally and
theoretically. Furthermore, the square root of second-order
moment for the Airy main lobe was measured using [29]

σ2 ¼ 4
R
∞
−∞ðt − t̄Þ2jηj2dtR

∞
−∞ jηj2dt ; t̄ ¼

R
∞
−∞ tjηj2dtR
∞
−∞ jηj2dt ð6Þ

(the integral is performed over the main lobe) and is shown
in Fig. 2(f), thereby confirming the weakly spreading
feature of Airy wave pulses. The Gaussian pulse envelope
having the same width as that of the main lobe of the Airy

FIG. 1 (color online). Experimental elevations (blue curves)
and theoretical envelopes (red curves) of Airy wave packets
measured at (a) x ¼ 1.43 m, (b) 7.46 m, and (c) 12.50 m, for
a0 ¼ 6.0 mm (ε ¼ 0.05), α ¼ 0.1, and ts ¼ 2.0 s.
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pulse exhibits significant broadening, see Figs. 2(d) and
2(e). The pulse width broadens to more than twice its
original width at x ¼ 12.10 m. The measured σ of the
Gaussian pulse agrees well with the theoretical result:
σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðx=x0Þ2

p
σ0, where σ0 is the initial square root of

the second-order moment and x0 ¼ gσ20=4 is the dispersion
length, see Fig. 2(f). A slight difference between experi-
ment and theory in Figs. 2(c) and 2(e), as well as the weak
spreading of Airy pulses in Fig. 2(f), is explained by partial
experimental fulfillment of the slowly varying envelope
approximation. A short pulse width in the experiment
would lead to deviation from the theory due to the low
carrier frequency. Note that a small number of side lobes
that can be used to compensate the dispersion of the main
lobe [30] further contributes to the discrepancy.
A noteworthy feature of Airy wave packets is their so-

called “self-acceleration.” In the experiment, the temporal
accelerations of the local envelope maxima of the Airy and
time-inverted Airy water-wave pulses were investigated,
with ts ¼ 0.7 s, keeping other parameters unaffected. From
the results shown in Fig. 3, it can be deduced that for
different fixed locations, the larger x gives rise to a larger
temporal shift between the main lobes of the Airy and the
time-inverted Airy pulses, which implies the different
propagating group velocities of these two kinds of Airy
wave packets, i.e., self-accelerating during propagation.
This phenomenon is clearly demonstrated in Fig. 4, illus-
trating the distinct parabolic trajectories of the main lobes
of the Airy (red curves) and time-inverted Airy pulses
(brown curves), as compared with the linear trajectory of
the Gaussian pulses (blue curves). As the maxima of these
pulse envelopes were located at different time points at the
origin, these curves shown in Fig. 4 were shifted to the
same zero time point at x ¼ 0 so that the trajectories can be
well described by the analytical expressions, see Eq. (3),

with ν ¼ 1 for the Airy pulses, ν ¼ −1 for the time-inverted
Airy pulses, and ν ¼ 0 for the Gaussian pulses. The solid
lines in Fig. 4 are the analytical results, showing good
agreement with the experiments. Self-healing of the Airy
wave packets was also demonstrated experimentally and
numerically, see the Supplemental Material [31].
We present the first direct experimental measurements of

the phase of Airy wave packets during propagation. Based
on Eq. (4), the phase for the Airy wave packets can be
expressed as ψðξ; τÞ ¼ φAi þ φ, where φAi is the phase of
the Airy function and φ ¼ −τξ − α2ξþ 2=3ξ3 is the
induced evolution phase of the envelope during propaga-
tion. For the truncated Airy pulses, φAi can be obtained
numerically. In our experiment, the phase of the Airy water-
wave envelope is modulated by a carrier wave: ηðx; tÞ ¼
Re½a0Aðx; tÞ expðik0x − iω0tÞ� [32]. Thus the phase of the
elevation wave groups in the experiments is described
by ψ ¼ φAi þ φþ k0x − ω0t.
To demodulate the phase φ from the carrier wave, we

extract the local maximum and minimum values of the
elevation wave groups, marked in red and green dots
respectively at different times tj (j is the index of these
points), see Figs. 5(a), 5(c), and 5(e). At these marked

FIG. 2 (color online). (a)–(c) Experimental elevations (blue
curves) and theoretical envelopes (red curves) of Airy wave
packets at (a) x ¼ 1.10 m, (b) 6.10 m, and (c) 12.10 m, for a0 ¼
5.0 mm (ε ¼ 0.04), α ¼ 0.1, and ts ¼ 1.2 s. (d),(e) Gaussian
pulse measured at (d) x ¼ 1.10 m and (e) 12.10 m. (f) The
measurements of the second-order moment for Airy and Gaussian
wave pulses. The solid brown line is the analytical result for the
Gaussian pulse.

FIG. 3 (color online). Evolutions of Airy (a)–(c) and inverted
Airy (d)–(f) wave packets with ts ¼ 0.7 s: experimental eleva-
tions (blue curves) and theoretical envelopes (red curves) at (a),
(d) x ¼ 1.00 m, (b),(e) x ¼ 4.00 m, and (c),(f) x ¼ 7.00 m.

FIG. 4 (color online). The parabolic trajectories of the Airy (red
curves) and inverted Airy (brown curves) wave packets, using the
same parameters as in Fig. 3. The blue curve corresponds to the
linear trajectory of a Gaussian pulse, as shown in Fig. 2. The solid
lines are analytical results, according to Eq. (3); the symbols are
measurements.
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points, we have the relation cosðψ jÞ ¼ �1 [for red (green)
points, it equals 1 (−1)]. Therefore, the induced phase φ at a
fixed location can be expressed as φj ¼ arccosð�1Þþ
ω0tj − φAi;j − k0x. As an example, given the elevation
wave groups measured at x ¼ 2.50 m, see Fig. 5(a), the
corresponding phase variation with time in the form of a
cosine function is depicted in Fig. 5(b). The blue scattered
dots show the experimental outcome while the solid brown
line is the theoretical result according to the analytical
expression shown in Fig. 5(b). Using the same method, for
the measurements at x ¼ 5.53 and 8.58 m, see Figs. 5(c)
and 5(e), the phases φ of the Airy envelopes can be
determined too, as displayed in Figs. 5(d) and 5(f). As
expected, at a fixed location, the induced phase φ is a linear
function of time t, see Eq. (4). The slope of the linear
function of the phase is determined by ts and the location x.
In the experiment, the phase at specific locations is also
supposed to be expressed as φ ¼ φ0 þ ct, where φ0 is the
initial phase shift and c is the slope of the function. The
value of c can be obtained directly at different locations by
fitting the experimental results, as shown in Fig. 5(h). As
for the phase offset φ0, owing to the phase ambiguity of the
inverse cosine function, a set of possible phases at each
location is obtained, having a 2π spacing between them.
Fortunately, one of these points coincides with the theo-
retical cubic position-dependence phase shift, see Fig. 5(g),

thereby enabling us to remove the phase ambiguity. Both
the experimental and theoretical results show that for larger
values of x, the value of the slope c is also increasing
linearly, which leads to a rapid oscillation of the phase,
seen from Figs. 5(b), 5(d), and 5(f). These measurements
therefore explicitly confirm the linear dependence of the
Airy wave phase, and indirectly indicate the cubic depend-
ence of the phase offset.
Finally, we investigated the effect of nonlinearity on the

propagation dynamics of the Airy water-wave pulses.
Observations of the transition of Airy pulses from stability
to instability owing to the Kerr-type nonlinearity are
presented here for the first time. For a sufficiently low
incident amplitude, i.e., a0 ¼ 5 mm, where the nonlinear-
ity is negligible, the Airy pulse wave packets self-
accelerated along a parabolic trajectory during the
propagation, see Figs. 6(a) and 6(b). The Airy pulse
preserves its shape within nearly 4 m, and begins to
broaden due to dispersion (note that here the pulse
width is nearly half that of Fig. 2; hence, the broadening
is more pronounced). When the amplitude was increased
to a0 ¼ 17 mm, it was observed that the Airy pulses
stabilized (the so-called self-accelerating self-trapped Airy
pulse [11]): not only did they self-accelerate along the
parabolic trajectory, but the dispersion was compensated
by the induced weak nonlinearity. This leads to preser-
vation of the shape over the longer distance of nearly
8 m, approximately twice as long as the linear case, see
Figs. 6(c) and 6(d). For an even higher amplitude
a ¼ 23 mm, strong Kerr nonlinearity was induced, as
evident from widening of the corresponding spectra [31].
In this case, the central lobe of the Airy pulse started
compressing during propagation, further increasing its

FIG. 5 (color online). (a),(c),(e) are the measured elevation
Airy wave groups with the parameters of Fig. 3, while (b),(d),(f)
are the corresponding phase variations with time, at (a),(b)
x ¼ 2.50 m, (c),(d) 5.53 m, and (e),(f) 8.58 m. The expressions
in (b),(d),(f) describe the analytical phases. (g) The phase offset
φ0 as a cubic function of x, and (h) the slope c of the linear time-
dependent function of the phase.

FIG. 6 (color online). Evolutions of Airy envelopes [left,
obtained from the measurements by the Hilbert transform; right.
simulatedbasedonEq. (1)]with ts ¼ 0.65 sandα ¼ 0.1, ina frame
of reference moving at speed cg. Measurements were performed at
(a),(b) a0 ¼ 5 mm, ε ¼ 0.04, (c),(d) a0 ¼ 17 mm, ε ¼ 0.14, and
(e),(f) a0 ¼ 23 mm, ε ¼ 0.19. The color bar units are millimeters.
For the a0 ¼ 23 mm evolution movie see Ref. [31].
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amplitude, which eventually leads to a collapse and an
emission of a stationary soliton, shown in Figs. 6(e)
and 6(f) and in the nonlinear evolution movie in Ref. [31].
The numerical simulations were carried out using the
nonlinear Eq. (1). Both experiments and simulations show
a negligible effect of the soliton emission on the original
parabolic trajectory. The numerical simulation shows that
there are also additional small-amplitude waves emitted
from the weaker side lobes at an angle to the straight
soliton, see Fig. 6(f). These waves are similar to the
solitons predicted in Ref. [11]. However, these are not
observed clearly in the experiment, possibly owing to
their low amplitude.
In conclusion, we presented the first observation for the

propagation dynamics of Airy water-wave pulses in both
the linear and the nonlinear regimes. In the linear regime,
we discussed the nonspreading, self-accelerating, and self-
healing [31] properties of Airy pulses. It is worth mention-
ing that the evolution phase of Airy wave packets predicted
more than 35 years ago [1] has been confirmed exper-
imentally in our Letter for the first time. It should be
emphasized that a direct phase measurement of Airy wave
packets is inaccessible in optical experiments [2]. where
owing to the high carrier frequency only the signal intensity
can be measured and therefore the information of the phase
is lost. We further note that our measurement technique is
not limited to Airy wave packets, and it provides us with an
opportunity to fully study the dynamics of the envelope and
phase of other kinds of water-wave packets. In the non-
linear regime, we observed the transition of Airy pulses in
water waves from stability to instability with Kerr-type
nonlinearity. Previous predictions of the self-accelerating
self-trapped Airy pulse [11], as well as soliton shedding
[13,14] from Airy pulses, were observed experimentally.
We believe that the results presented here are new and
of interest both in optics and hydrodynamics, as analogies
between these two fields have yielded interesting
outcomes [21].
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