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We show that multiple filamentation patterns in high-power laser beams can be described by means of
two statistical physics concepts, namely, self-similarity of the patterns over two nested scales and nearest-
neighbor interactions of classical rotators. The resulting lattice spin model perfectly reproduces the
evolution of intense laser pulses as simulated by the nonlinear Schrédinger equation, shedding new light on
multiple filamentation. As a side benefit, this approach drastically reduces the computing time by 2 orders
of magnitude as compared to the standard simulation methods of laser filamentation.
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The nonlinear Schrodinger equation (NLSE), originally
emanating from quantum mechanics, is paradigmatic of a
universal equation which is widely used in a variety of
fields such as nonlinear optics [1], Bose-Einstein conden-
sates [2,3], plasma physics [4], or fluid mechanics [5]. Its
analytical properties are quite well known, and exhibit
features such as integrability in one dimension [6], or finite-
time blow up for higher spatial dimensions [7,8].

In the field of nonlinear optics, the NLSE describes light
filaments [9,10] forming in the propagation of laser pulses
whose power exceeds a certain critical value. For powers
much beyond the latter, the beam breaks up into many cells,
each generating one filament [11-13], forming complex
multiple filamentation patterns [14]. We recently showed
that the formation of such patterns from an initially smooth
laser beam profile defines a two-dimensional phase tran-
sition governing the geometrical structuring of the beam
and the self-organization of light filaments [15]. The
patterns associated to this phase transition are similar to
those produced by percolation [16,17] or spin models from
the statistical physics literature [18-20].

The salient features of such systems generally arise from
the nearest-neighbor interactions between the underlying
constituents, mainly quantum or classical spins. However,
the description of multiple filamentation patterns as the
result of basic interacting elements like spins was never
considered until now. Laser filaments have been shown to
laterally interact with their neighbors located at a distance
of several millimeters in the beam profile [21-26]. This
interaction is attractive if the filaments are in phase, and
repulsive if they are in antiphase [27,28], because it is
mediated by interference of the photon bath surrounding
each filament [29-32]. However, such interactions have up
to now been only considered locally. No impact on the
global beam profile evolution was investigated, or even
expected.

In this Letter, we derive a model for laser multiple
filamentation, showing that this physical phenomenon can
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be understood as a consequence of self-similarity and
nearest-neighbor interaction between coarse-grained light
elements. This results in a description highly reminiscent of
the Edwards-Anderson spin-glass model [33—-36], quanti-
tatively bridging nonlinear optics to out-of-equilibrium
statistical physics.

In the following, we will first discuss the self-similarity
of multiple filamentation patterns. Then, we will show that
it allows us to drastically coarse grain the dynamics with
minimal loss of information, provided time is adequately
rescaled to account for the change in the speed of transverse
information flow induced by this procedure. The resulting
lattice spin model will then be validated by a direct
confrontation to the results of the standard NLSE integra-
tion, showing an amazing agreement.

The starting point of our derivation is the NLSE, which,
in dimensionless units, reads

0w + Ay + f(ly|))y = 0. (1)

where 7 is the propagation distance, A = 9% + 9} the two-
dimensional transverse Laplacian, which accounts for
geometrical diffraction, and the function f describes the
nonlinear physical mechanisms at play, including dissipa-
tion and saturation. Although the NLSE is ubiquitous in
physics, in the following we mainly focus on the case of
multiple filamentation, where pattern formation is well
characterized both experimentally [37] and theoretically
[15]. In filamentation, y is the electric field envelope, and
for numerical simulations it is quite common to model the
nonlinearity as

F(wl?) = lwl*> = [w** + iwjw|*2, (2)

where the first term accounts for the Kerr self-focusing
effect, and the two last ones model defocusing by free
electrons as well as losses due to the K-photon ionization
releasing these electrons.
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Equation (1) features a linear instability, called the
modulational instability, with spectacular experimental
consequences ranging from the emergence of solitons in
Bose-FEinstein condensates [38,39] to the formation of
multiple filamentation patterns [40—43] in large high-power
laser beams. The growth rate y of this instability can be
obtained analytically. For a plane wave steady state y e,
writing k; the spatial transverse wave vector of the
perturbation leads to [22]

Y= kJ_\/ ZW%f/(W%) - kzr 3)

Figure 1 displays the resulting patterns in the case of
laser propagation in air by solving numerically Eq. (1). The
initial condition is taken as a fourth-order super-Gaussian
of 5 cm diameter, holding 50 TW at a wavelength of
800 nm. The relationship between the dimensionless units
and the real physical parameters is given in the
Supplemental Material [44]. The modulational instability,
seeded by the initial beam noise [Fig. 1(a)], triggers the
emergence of mesoscopic structures [Fig. 1(b)] which are
later amplified [Fig. 1(c)] by the nonlinearities in Eq. (2).
Furthermore, Fig. 1(d) displays a close-up of the center of
the beam after 7 m of propagation. The patterns are quite
similar at both scales. In particular, they share the following
common features: (i) local maxima attracting intensity,
depleting the energy around them, (ii) strings of
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FIG. 1 (color online). (a), (b), and (c) Evolution of an initially
perturbed flat top laser profile of 50 TW at 800 nm, with 5 cm
waist. The modulational instability seeds the emergence of a
pattern, which self-sustains when nonlinear effects come
into action. (d) Magnification of a central zone showing self-
similarity.

intermediate intensity connecting these local maxima,
(iii) regions of weaker intensity (photon bath) around
them, (iv) lateral interactions between the maxima struc-
tures, and (v) the overall shrinking of the whole pattern
towards a structure with the lower length scale. Similar
patterns can therefore be observed on two spatial scales, 2
orders of magnitude apart in size.

Beyond the visual aspect, the self-similarity can be
quantitatively evidenced by investigating the structure
factor S, of the laser fluence A = |y|?, defined by

Sp(k.m) = (JA(k.)P). (4)

where the hat denotes the Fourier transform, and the
brackets an ensemble average. Figure 2(a) displays three
spectra corresponding to two stages of the evolution of the
laser beam. Starting from a flat transverse spectrum
describing the various length scales of the initial profile
modulated with a white noise, the modulational instability
seeds the emergence of the characteristic patterns at stake
here. The peaks on the spectrums after 7 and 12 m
propagation depict the aforementioned multiple scales
constituting the self-similarity.

We define the characteristic length £ of the patterns using
the structure factor as

[ Sk n)dk

§0n) = TkS (k. n)dkc”

(5)

During the propagation, & first increases from the initial
noise correlation length until a maximum length attained at
the percolation threshold [15] [Fig. 2(b)]. This increase
differs from the monotonic decay of the correlation length
that is obtained with thresholded, two-color images [15]. At
further propagation distances, the fluence clusters either
vanish because of dissipation, or get squeezed in size
because of the energy flux towards their center, resulting in
a decrease of £.
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FIG. 2 (color online). ~ (a) Structure factor S, (k) calculated after
4 m (representative of the initial conditions), 7 m, and 12 m of
propagation. Note that we have suppressed the zero peak for
clarity reasons. (b) Evolution of the correlation length & [Eq. (5)]
for a 800 nm, 50 TW beam of 5 cm waist.
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The images shown on Fig. 1 are reminiscent of many
models studied by the statistical mechanics community.
One can note a striking resemblance with coarsening
phenomena [48,49]: here, the transverse low and high
intensity regions can be seen as two different phases of a
generic model evolving under Ginzburg-Landau dynam-
ics [50].

This behavior is generally well reproduced by simple
spin models with proper time dynamics, and we shall now
derive a lattice spin model (LSM) of filamentation, based
on the previous observations. The patterns’ topology we
aim at reproducing is mainly due to the combined effects of
modulational instability and Kerr nonlinearity. We there-
fore truncate f [Eq. (2)] to its cubic contribution in .

The patterns shown in Fig. 1 strongly suggest modeling
the electric field by a superposition of narrow, Gaussian-
like, elementary wavelets. We chose their spatial extensions
comparable to the lowest-order structure in the beam,
ie., 10 um. Therefore, the field can be expanded
as y(r,n) = 3, A, (x,n)e ).

The universality class unveiled in [15] suggests that the
behavior of a lattice model close to criticality should be
independent from the microscopic detail, and a fortiori
from the lattice geometry. Hence, we define the set of {r, }
as a square lattice. Projecting Eq. (1) on each e and
identifying real and imaginary parts leads to

0 An = _2VA11 : V¢n - AnA‘:bn? (6)

n

Anaq¢n = AAn - An‘v¢n|2

+ AnZA/Am cos (¢t’ - ¢m> (7)
‘.m

By definition, A, displays a maximum at r=r,.
Considering that the phase ¢, is strongly impacted by
the B integral [10], hence by the amplitude A,,, we assume
that it also has an extremum at the same location.
Therefore, Egs. (6) and (7) can be simplified by canceling
every first spatial derivative. As detailed in the
Supplemental Materal [44], the spatial self-similarity
allows us to derive a lattice model in which each square
lattice site n of area 5> holds two observables, A, and ¢,,
being the respective averages of the amplitude and phase
over the lattice sites:

An = _K[¢11]An’ <8)
b _M+A2+A > Ascos (b —d).  (9)
n — An n n<f>n 4 n ‘)

The dots in Egs. (8) and (9) refer to a “time” derivative,
which will reproduce the propagation dynamics of the
original NLSE, and where « is the discretized Laplacian
over the four nearest neighbors. For a site (i,j), it

) ki) = (1/8) (=4 j+ i1 j+ bict j+ bijr +
ij—1)-

fiquations (8) and (9) are the main result of this Letter.
Each lattice site can be seen as an individual classical
rotator, described by two observables, A and ¢, which are
its length and angle, respectively. These rotators evolve
under nearest-neighbor interactions, arising from both the
discretized Laplacians and the last term of Eq. (9), account-
ing for the coarse-grained interference phenomenon. For
instance, if two lattice neighbors share a common optical
phase, their amplitudes will constructively interfere, mim-
icking the situation in which two filaments attract each
other, and eventually merge. Conversely, if these two
neighbors feature a relative phase shift of z, a destructive
interference will decrease their amplitudes and eject their
energy towards sites further away, as reported experimen-
tally [28].

The interaction term J,,, = cos(¢,, — ¢, ) is typical of the
spin-glass model, e.g., the soft-spin version of the Edwards-
Anderson model [33-35,51], characterized by the inter-
action Hamiltonian between spins o;, H = —Z@ 1/ij0i0;
and evolving under a phenomenological Langevin
equation,

SH
5Gi+§i _ﬁ%-]ijaj"’_éi’ (10)

6 =—p

f being the inverse temperature and £; a Gaussian random
variable.

As a test for the relevance of the presented LSM, we will
now compare its pattern predictions with the results
obtained by integrating the NLSE using a standard split-
step Fourier method (SSFM). As an initial condition, we
use an already slightly propagated beam (by 4 m) with the
same properties as in Fig. 1. In general, one could estimate
the coarse-graining length 6 as being the inverse of the
wavelength maximizing the linear growth rate y, since
clusters of such a size are expected to emerge quicker than
others. Doing so with an initial condition as presented here
yields 6 =924 um, in good agreement with the actual
physical range as the size of the photon bath surrounding a
single filament is typically between 500 and 1000 pm.
Practically speaking, starting from the field y, we define
the spins (A, ¢,,) as

1 1/2
a= (i [ [ e open) "
z,

1
b= [ | ot e (12)

where T, stands for the lattice cell n of area 6>. Note that it
is important to average the fluence |y|?, and then only take
the square root instead of directly averaging the field .
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This way, Eq. (11) ensures the conservation of the photon
number Py = >_,5°A2.

A direct integration of Egs. (8) and (9) yields a very good
qualitative agreement with the reference NLSE patterns
computed with the SSFM. However, the smallest coarse-
grained length scales of order & (typically millimetric)
behave within the same time scale in the LSM as their much
smaller counterparts of a hundred micrometers in the NLSE
hereafter denoted by .. As a consequence, a pattern arising
after a few meters would be predicted after only a few
centimeters by the LSM.

However, a linear stability analysis shows that the LSM
exhibits the same growth rate given by Eq. (3) as the NLSE,
which is remarkable. Based on this result, we devised a
strategy detailed in the Supplemental Material [44] in order
to recover the proper dynamics, introducing a rescaled time

variable 7 reading
4
= /== 13
=/ (13)

This time renormalization therefore ensures that the LSM
correctly reproduces the speed of the transverse diffusion of
information.

In our case, we considered a coarse-graining length
0 = 732 um, i.e., 40 pixels in our reference NLSE numeri-
cal resolution. Since we smoothed our initial random noise
over a length of 4 pixels, we set the small-scale cutoff
length £, = 6/10 = 73.2 ym. From Eq. (13), we deduce
that the time renormalization factor is equal to 0.32. Again,
this factor lower than unity translates the fact that the
coarse-graining causes the LSM to act on the patterns much
quicker than the NLSE does, since the former is an
upscaled version of the latter.

We first set a flat initial phase, namely, a real initial .
Figures 3(a)-3(e) compare the fluence pattern obtained
from both the LSM and the NLSE after approximately 9 m
of free propagation. Despite the apparent lack of informa-
tion in the initial condition (at 4 m), the LSM remarkably
reproduces the final reference NLSE pattern, showing that
the interpretation of multiple filamentation in terms of
interacting spins yields quantitative predictions. This is
very remarkable as filamentation is generally considered as
a local phenomenon requiring a high spatial resolution in
order to capture its salient features.

To check the fidelity of the phase evolution in a “worst-
case scenario,” we also considered initial abrupt phase
jumps from zero to —z/2 [Fig. 3(i)]. This case was chosen
because of the difficulty of stimulating fields with steep
gradients, which result in strong diffraction and instabilities
that can only be resolved at extremely high resolutions. A
coarse-grained model intrinsically cannot capture such
features, making this situation a robustness check of
the LSM.
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FIG. 3 (color online). Comparison between the lattice spin
model and the coarse-grained result of the NLSE simulation
using the SSFM. (a)—(e), flat initial phase; (f)—(j), worst-case
scenario with /2 phase jumps. (a),(f) Initial condition for the
LSM, originating from a full resolution SSFM integration, (b),(g)
LSM output; (c),(h) NLSE output using SSFM; (e),(j) horizontal
cuts across the model outputs.

We modulated the aforementioned amplitude pattern by
a phase mask displaying the word “unige.” Figure 3 shows
a remarkable agreement after 3 m of free propagation,
despite a glitch on the reproduction of the letter “g.”

Moreover, these results are not tributary to a fine-tuned
choice of the coarse-graining length 6. One can freely
choose it in the aforementioned physically acceptable range
and still obtain reasonable results, whereas a decrease of
resolution in the SSFM method rapidly leads to erroneous
simulations.

These two cases highlight the relevance and the quanti-
tative accuracy of the LSM. For smooth initial phases, the
relative error on intensity stays below 10%. The importance
of nearest-neighbor interaction was demonstrated by
switching off the corresponding term in Eq. (9). The beam
then keeps a smooth shape very different from what is
observed in both experiments and NLSE simulations.

It is quite straightforward to derive richer lattice models
encompassing more phenomena, such as saturation mech-
anisms, plasma generation [see Eq. (2)], or even air
turbulence. This would simply require expanding the
additional physical model on the wavelet basis, and then
simplify all the remaining terms by keeping in mind the
nearest-neighbor picture.

As a conclusion, we took advantage of the self-similarity
of multiple filamentation patterns to introduce the descrip-
tion of laser multiple filamentation as a lattice spin model
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with glassylike dynamics. The numerical benchmarks
showed an excellent agreement with the full calculations,
demonstrating the robustness of such a novel interpretation,
that can also be related to the recent observation of a
percolationlike phase transition in such a system [15].
Furthermore, as a consequence of the coarse-grained
description, the small lattice sizes at play allow computing
times faster by 2 orders of magnitude as compared to
standard SSFM calculations. Such a speedup opens the way
to statistical studies of, e.g., beam propagation through
turbulence or explicit inversion of nonlinear Lidar mea-
surements [52—-54] of atmospheric trace constituents.

In a wider scope, our approach only relies on the
structure of the NLSE, not on a particular nonlinearity
(i.e., a particular function f) nor its application to a specific
physical system. Therefore, it can be generalized to other
fields of physics described by the NLSE, where such self-
similarity could also be observed and exploited [55-57].
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