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We construct a new class of rotating anti–de Sitter (AdS) black hole solutions with noncompact event
horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black
holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from
the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the
black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent
conditions under which this conjecture may hold.
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The study of the thermodynamics of black holes in anti–
de Sitter space (AdS) has received much attention since the
seminal paper of Hawking and Page [1]. The AdS case is of
particular interest because thermodynamic equilibrium is
straightforwardly defined and physical phenomena in the
bulk admit a gauge duality description via a dual thermal
field theory.
A novel topic of active study in recent years is the

proposal that the mass of an AdS black hole should be
interpreted as the enthalpy of spacetime [2]. This idea is a
consequence of considering the cosmological constant Λ to
be a thermodynamic variable [3] analogous to pressure in
the first law [2,4–14], which has a number of implications.
First, as a thermodynamic quantity, Λ must have a con-
jugate variable, the natural interpretation of which is a
thermodynamic volume associated with the black hole.
(For a discussion on extending thermodynamic volume
beyond black hole spacetimes, see Refs. [12,13].) Second,
in the presence of a nonzero Λ, the standard Smarr formula
no longer holds. This problem is remedied when Λ is
permitted to vary in the first law and the corresponding term
is added to the Smarr relation [2]. Third, the extended phase
space allows one to rewrite black hole thermodynamic
equations as equations of state analogous to those of
everyday simple substances, obtaining, for example, a
gravitational analogue of the van der Waals fluid, triple
points, and reentrant phase transitions (for a review see
Ref. [10]) and the notion of a holographic heat engine [11].
The proposed relationship between the cosmological

constant and the pressure is

P ¼ −
1

8π
Λ ¼ ðd − 1Þðd − 2Þ

16πl2
; ð1Þ

where d is the number of spacetime dimensions. The
thermodynamic volume V for the asymptotically AdS

black hole spacetimes is then defined so that the following
extended first law of black hole thermodynamics holds:

δM ¼ TδSþ
X
i

ΩiδJi þ ΦδQþ VδP; ð2Þ

a result supported by geometric arguments [2]. Here,
M; J; T, and S stand for the mass, angular momentum,
temperature, and the entropy of the black hole, while theΩi
are the angular velocities and Φ is the electric potential, all
measured with respect to infinity. The corresponding Smarr
relation

d − 3

d − 2
M ¼ TSþ

X
i

ΩiJi þ
d − 3

d − 2
ΦQ −

2

d − 2
VP ð3Þ

can be derived from a scaling (dimensional) argument [2].
An interesting property of the thermodynamic volume is

that, in all the cases studied so far, it satisfies what is known
as the reverse isoperimetric inequality [8,10]. Indeed, it was
conjectured in Ref. [8] (see Ref. [14] for the de Sitter
version) that the isoperimetric ratio

R ¼
�ðd − 1ÞV

ωd−2

�½1=ðd−1Þ��ωd−2

A

�½1=ðd−2Þ�
ð4Þ

always satisfies R ≥ 1. Here, V is the thermodynamic
volume, A is the horizon area, and ωd stands for the area
of the space orthogonal to constant ðt; rÞ surfaces; for a
d-dimensional unit sphere ωd ¼ 2π½ðdþ1Þ=2�=Γ½ðdþ 1Þ=2�.
This result can be interpreted as implying that
Schwarzschild-AdS black holes are “maximally entropic”:
for a black hole of a given “volume” V its entropy is
maximized for Schwarzschild-AdS space.
Here, we construct a new ultraspinning limit to the

singly spinning Kerr-AdS metric in d spacetime
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dimensions that yields a new class of black hole solutions
whose entropies exceed this maximum bound. The ultra-
spinning transformation we employ begins with a Kerr-
AdS black hole written in a coordinate system that rotates
at infinity. We then boost this rotation to the speed of light
and compactify the corresponding azimuthal direction. In
so doing we qualitatively change the structure of the
spacetime since it is no longer possible to return to a frame
that does not rotate at infinity. When d ¼ 4 the obtained
metrics are equivalent (upon inclusion of charge) to a class
of black hole solutions of gauged supergravity in four
dimensions, recently derived in Ref. [15] and later
elaborated upon in Ref. [16]. Insofar as the solutions
we construct are understood as string theory ground states,
through the AdS/CFT correspondence, topics such as
microscopic degeneracy can be studied [17]. The class
of black holes we construct all have horizons that are
noncompact yet have finite area (and therefore entropy).
We find that this particular feature is sufficient to ensure
that their entropy exceeds the maximal bound implied by
the reverse isoperimetric inequality [8]; as such they
provide the first counterexample to this conjecture.
Such black holes are therefore “superentropic”.
Let us start with the four-dimensional Kerr–Newman-AdS

solution [18], written in the “standard Boyer–Lindquist
form” [19]

ds2 ¼ −
Δa

Σa

�
dt −

asin2θ
Ξ

dϕ

�
2

þ Σa

Δa
dr2 þ Σa

S
dθ2

þ Ssin2θ
Σa

�
adt −

r2 þ a2

Ξ
dϕ

�
2

;

A ¼ −
qr
Σa

�
dt −

asin2θ
Ξ

dϕ

�
; ð5Þ

where

Σa ¼ r2 þ a2cos2θ; Ξ ¼ 1 −
a2

l2
;

S ¼ 1 −
a2

l2
cos2θ;

Δa ¼ ðr2 þ a2Þ
�
1þ r2

l2

�
− 2mrþ q2 ð6Þ

with the horizon rh defined by ΔaðrhÞ ¼ 0. The thermody-
namic quantities obeying Eq. (2) were calculated in
Refs. [4,6,8]; in particular, the thermodynamic volume V
and the horizon area A read

V ¼ 2π

3

ðr2h þ a2Þð2r2hl2 þ a2l2 − r2ha
2Þ þ l2q2a2

l2Ξ2rh
;

A ¼ 4πðr2h þ a2Þ
Ξ

; ð7Þ

and satisfy the isoperimetric inequality R ≥ 1.

Let us now consider a new ultraspinning limit as follows.
We first replace everywhere ψ ¼ ϕ=Ξ, and then take the
a → l limit. In this way we obtain a new solution of the
Einstein–Maxwell equations, the superentropic black hole,
given by

ds2 ¼ −
Δ
Σ
½dt − lsin2θdψ �2 þ Σ

Δ
dr2 þ Σ

sin2θ
dθ2

þ sin4θ
Σ

½ldt − ðr2 þ l2Þdψ �2;

A ¼ −
qr
Σ
ðdt − lsin2θdψÞ; ð8Þ

where

Σ ¼ r2 þ l2cos2θ; Δ ¼
�
lþ r2

l

�
2

− 2mrþ q2: ð9Þ

In this form, ψ is a noncompact coordinate, which we now
compactify

ψ ∼ ψ þ μ; ð10Þ

where the parameter μ is dimensionless. The metric (8) can
be shown to be the same as that obtained in Refs. [15,16]
via the following change of coordinates:

τ ¼ t; p ¼ l cos θ; σ ¼ −ψ=l; L ¼ μ=l:

ð11Þ

The location of the horizon rþ is determined by the
largest root of ΔðrÞ. In order for horizons to exist, the mass
parameter must satisfy

m ≥ 2r0

�
r20
l2
þ 1

�
;

r20 ≡ l2

3

�
−1þ

�
4þ 3

l2
q2
�

1=2
�
: ð12Þ

The case where equality holds corresponds to an extremal
black hole.
The compactification of ψ introduces no conical singu-

larities. The induced metric on the horizon approaches a
metric of constant negative curvature on a quotient of the
space H2 near θ ¼ 0; π [16]. It is straightforward to show
that the Ricci scalar for the induced metric on the horizon is
everywhere finite. The full 4d metric is everywhere
asymptotically anti–de Sitter, with the coordinate ψ becom-
ing null on the conformal boundary [16].
The fundamental thermodynamic parameters of the

superentropic black hole are
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M ¼ μm
2π

; J ¼ Ml; Ω ¼ l
r2þ þ l2

;

T ¼ 1

4πrþ

�
3
r2þ
l2

− 1 −
q2

l2 þ r2þ

�
;

S ¼ μ

2
ðl2 þ r2þÞ ¼

A
4
; Φ ¼ qrþ

r2þ þ l2
; Q ¼ μq

2π
:

ð13Þ

The angular velocity Ω is that of the horizon and the mass
and angular momentum were computed using the method
of conformal completion [20–22] using the associated
Killing vectors ∂τ and ∂ψ . respectively. Note also the
“chirality condition” J ¼ Ml.
The thermodynamic characteristics displayed here appear,

at first glance, to differ from those presented in Ref. [16].
However, the quantities are easily shown to be the same
when one takes note of two points. First, the quantity μ in
Eq. (13) is related toL fromRef. [16] by μ ¼ lL. Second, the
angular momentum computed in Ref. [16] is computed with
respect to the coordinate σ, which has dimension ½L�−1,
rendering it to be an angular momentum per unit length.
The quantities in Eq. (13) all have scaling dimensions
consistent with their Kerr-Newman-AdS counterparts.
We now consider the thermodynamics in extended phase

space. In addition to considering pressure and volume
terms, we also consider μ as a thermodynamic parameter.
In the context of asymptotic Schrödinger geometries the
compactified null length can be interpreted as a chemical
potential [23]. As discussed in Ref. [16], ψ becomes
identified as a compact null coordinate on the conformal
boundary. Since μ is associated with the compactification
of ψ , we therefore interpret μ as being related to a chemical
potential and denote its thermodynamic conjugate as K.
To determine K and the thermodynamic volume V, we

demand consistency of the extended first law:

dM ¼ TdSþ VdPþ ΩdJ þ ΦdQþ Kdμ: ð14Þ

Doing so yields

V ¼ rþA
3

¼ 2

3
μrþðr2þ þ l2Þ; ð15Þ

K ¼ ðl2 − r2þÞ½ðr2þ þ l2Þ2 þ q2l2�
8πl2rþðr2þ þ l2Þ : ð16Þ

The above thermodynamic quantities obey the Smarr
relation (3); note that there is no contribution from a Kμ
term as μ is a dimensionless quantity. It is interesting to
note that the thermodynamic volume V found here is
reminiscent of the naive geometric volume (the integral
of

ffiffiffiffiffiffi−gp
“inside” the event horizon) of the Kerr-AdS black

hole (studied in detail in Ref. [8]), in strong contrast to the
traditional ultraspinning black holes, for which the naive

geometric volume negligibly contributes to V [10]. Note that
V does not explicitly depend on the black hole charge q, as
in the case of nonrotating charged AdS black holes [9].
It is straightforward to see that these black holes are

superentropic. Bearing in mind that our space is compacti-
fied according to Eq. (10), the orthogonal two-dimensional
surface area takes the form ω2 ¼ 2μ. Consequently, the
isoperimetric ratio (4) now reads

R ¼
�
rþA
2μ

�
1=3

�
2μ

A

�
1=2

¼
�

r2þ
r2þ þ l2

�
1=6

< 1: ð17Þ

Hence we have shown that our black holes always violate the
reverse isoperimetric inequality.
This result stands in contrast to the “usual” ultraspinning

limit of Kerr-AdS black holes [24] in which, as a → l, the
isoperimetric ratio approaches infinity, maximally satisfy-
ing the reverse isoperimetric inequality. The distinction
arises because of the nature of the ultraspinning limit we are
taking. Rather than keepingM fixed and letting the horizon
area approach zero as a → l [10,24], here we require this
limit be taken while demanding that the horizon area
remain finite.
Unfortunately, this class of charged black holes does not

have interesting phase behavior or critical phenomena. For
example, in the charge-free case we obtain [using Eqs. (1)
and (13) for the pressure and temperature, respectively]

P ¼ T
v
þ 1

2πv2
ð18Þ

for the equation of state, where the specific volume v ¼
2rþ ¼ 6V=ðA=l2PÞ [9,10]. Since all terms on the right-hand
side are positive, it is not possible for this black hole to
exhibit critical behavior in the charge-free case. Inclusion
of electric charge leads to a more complicated equation of
state, but likewise yields no interesting critical behavior.
The same conclusion holds if alternate definitions of the
specific volume are employed (see, e.g. those in Ref. [10]).
For completeness we connect our results with previous

thermodynamic considerations [16] for these black holes.
The quantities M and J are not independent; consequently,
we should consider M ¼ MðS; P;Q; μÞ in deriving the
Smarr formula. A more convenient choice of thermody-
namic variables is L� ¼ 1

2
ðM � J=lÞ, where L− vanishes

due to the chirality condition J ¼ Ml [16]. It is straightfor-
ward to show that the first law (14) becomes

TdS ¼
�
1 −Ω

ffiffiffiffiffiffiffiffiffi
3

8πP

r �
dLþ −

�
V −

ΩLþ
8P

ffiffiffiffiffiffi
6

πP

r �
dP

− Kdμ − ΦdQ ð19Þ

and scaling arguments imply that the Smarr formula is

ZLþ ¼ 2ðTS − V 0PÞ þ ΦQ; ð20Þ
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where Z and V 0 are the respective thermodynamic con-
jugates to Lþ and P, from Eq. (19). Note that, in the case
where Λ and μ are not considered thermodynamic quan-
tities, the terms proportional to dP and dμ are not present
and the standard form of the first law [16] is recovered.
The preceding considerations suggest that perhaps

V 0 ¼
�
V −

ΩLþ
8P

ffiffiffiffiffiffi
6

πP

r �
ð21Þ

could be regarded as the thermodynamic volume rather
than V from Eq. (15). However, unlike V, V 0 suffers from
the drawback of not being strictly positive for all values of
the parameters, and the quantity Lþ in Eqs. (19) and (20)
does not correspond to either a mass or an angular
momentum. Furthermore, making this identification does
not alter our basic result, as we find that the reverse
isoperimetric inequality is still violated using V 0. For these
reasons we contend that V defined by Eq. (15) should be
regarded as the thermodynamic volume for this class of
black holes.
Based on the limiting procedure introduced earlier, it is a

straightforward matter to generalize the metric (8) to d
dimensions. Starting with the singly spinning (a1 ¼ a and
other ai ¼ 0) Kerr-AdS solution, replacing everywhere
ϕ ¼ ψΞ and then taking the limit a → l, we obtain

ds2 ¼ −
Δ
ρ2

ðdt − lsin2θdψÞ2 þ ρ2

Δ
dr2 þ ρ2

sin2θ
dθ2

þ sin4θ
ρ2

½ldt − ðr2 þ l2Þdψ �2 þ r2cos2θdΩ2
d−4; ð22Þ

where

Δ ¼
�
lþ r2

l

�
2

− 2mr5−d; ρ2 ¼ r2 þ l2cos2θ; ð23Þ

and dΩ2
d denotes the metric element on a d-dimensional

sphere. In this form, ψ is a noncompact coordinate, which
we now compactify via ψ ∼ ψ þ μ. It is straightforward to
show that the metric (22) satisfies the Einstein-AdS equa-
tions. Setting d ¼ 4 we recover the metric (8) with q ¼ 0.
Horizons exist in any dimension d ≥ 5 provided m > 0.
The solution inherits a closed conformal Killing–Yano

2-form from the Kerr-AdS metric, given by h ¼ db, where

b ¼ ðl2cos2θ − r2Þdt − lðl2cos2θ − r2sin2θÞdψ : ð24Þ
This object together with the explicit symmetries of the
metric guarantee complete integrability of geodesic motion
as well as separability of the Hamilton-Jacobi, Klein-
Gordon, and Dirac equations in the black hole background;
see Ref. [25] for analogous results in the Kerr-AdS case.
Computing the thermodynamic quantities for this sol-

ution in extended phase space, we find

M ¼ ωd−2

8π
ðd− 2Þm; J ¼ 2

d− 2
Ml; Ω¼ l

r2þ þ l2
;

T ¼ 1

4πrþl2
½ðd− 5Þl2 þ r2þðd− 1Þ�;

S¼ ωd−2

4
ðl2 þ r2þÞrd−4þ ¼ A

4
; V ¼ rþA

d− 1
; ð25Þ

where

ωd ¼
μπðd−1=2Þ

Γðdþ1
2
Þ ð26Þ

is the volume of the d-dimensional unit “sphere.”Here,Ω is
the angular velocity of the horizon and J and M have been
computed via the method of conformal completion as the
conserved quantities associated with the ∂ψ and ∂t Killing
vectors, respectively.
By varying μ we get the following expression for its

conjugate quantity K:

K ¼ 1

μ
ðM − TS −ΩJÞ: ð27Þ

One can easily verify that these thermodynamic quantities
satisfy the Smarr formula (3). The thermodynamic volume
obtained here satisfies the isoperimetric inequality (R ≤ 1)
in all dimensions, and so this class of black holes is also
superentropic.
To summarize, we have constructed a class of black hole

solutions to Einstein-AdS gravity that results from taking a
new ultraspinning limit of Kerr-AdS black holes in d
dimensions. These black holes are superentropic insofar
as their entropy is larger than the maximum allowed by the
reverse isoperimetric inequality [8] (shown to be obeyed by
all previously known black hole solutions): they have a
greater entropy than their thermodynamic volume would
naively allow.
We attribute this behavior to be a consequence of their

finite area but noncompact event horizons. We posit that the
reverse isoperimetric inequality conjecture might hold
under more stringent conditions: for a black hole with a
thermodynamic volume V and with a compact horizon of
area A, the ratio (4) satisfies R ≥ 1. The proof of this
conjecture and the implications of superentropic black
holes for counting black hole microstates remain interesting
open questions for further study.
Ultraspinning limits similar to the type we have taken

here can be applied to multiply spinning Kerr-AdS black
holes and charged Kerr-AdS black holes in higher dimen-
sions, yielding further new classes of solutions. We shall
elaborate further on this topic in the near future [26].
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