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We study many-body localized quantum systems subject to periodic driving. We find that the presence of
a mobility edge anywhere in the spectrum is enough to lead to delocalization for any driving strength and
frequency. By contrast, for a fully localized many-body system, a delocalization transition occurs at a finite
driving frequency. We present numerical studies on a system of interacting one-dimensional bosons and the
quantum random energy model, as well as simple physical pictures accounting for those results.
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Introduction.—The study of disorder and localization
has a long and productive history, beginning with the
seminal work of Anderson [1]. More recently, the effects
of disorder on interacting systems have been considered
under the heading of many-body localization (MBL) [2,3],
in part motivated by fundamental questions relating to
thermalization in closed quantum systems.
At the same time, significant theoretical effort has been

devoted to understanding thermalization in periodically
driven systems. There has been work recently on the
long-time behavior of both integrable [4–6] and nonintegr-
able [7–9] systems (with Ref. [9] also studying locally
driven MBL systems). For clean systems or MBL systems
in their delocalized phase, it has been found that driving
leads to a state equivalent to a fully mixed state, satisfying a
special case of the eigenstate thermalization hypothesis
(ETH) (see Refs. [7–13]). Local periodic driving of MBL
systems in their localized phase, on the other hand, has
been argued not to have any global effects [9].
In this work, we study the effects of global periodic

driving, and find that there exists a regime where MBL
survives. We identify two mechanisms by which periodic
driving might destroy MBL, depending on the existence or
nonexistence of a mobility edge. The first, rather robust,
mechanism is the mixing of undriven eigenstates from
everywhere in the spectrum by the driving; if there is a
mobility edge, this results in delocalization of all states of
the effective Hamiltonian. The second mechanism is more
subtle and involves strong mixing of states [8] which cause
a delocalization transition at finite frequency. Our findings
are summarized in Table I.
In what follows, we begin by studying the case of no

mobility edge. We introduce and numerically solve a
system described by a local nonintegrable Hamiltonian.
After establishing the existence of the aforementioned
critical frequency using level statistics, we demonstrate
that ETH is (is not) satisfied below (above) this frequency
and present a physical picture explaining this phenomenon.
We then move to the case where a mobility edge exists.

As a case study, we use the quantum random energy

model (QREM) which has recently been shown to display a
mobility edge. A direct numerical solution confirms that
driving delocalizes the entire spectrum, consistent with an
intuitive argument we sketch. Finally, we point out open
questions.
We shall concentrate throughout on systems described

by Hamiltonians of the form

HðtÞ ¼ H0 þHDðtÞ; ð1Þ

so that their time evolution is described by an effective
Hamiltonian HeffðϵÞ for each instant ϵ during the period T,
defined by

exp ½−iHeffðϵÞT� ¼ T exp

�
−i

Z
ϵþT

ϵ
dtHðtÞ

�
: ð2Þ

Without loss of generality, we set ϵ ¼ 0 (see Ref. [4]).
The eigenvalues of HeffðϵÞ, called the quasienergies, are
independent of ϵ and effectively play the role of energy
eigenvalues.
We now define what we mean by localized and delo-

calized phases. In a localized phase, the (quasi)energy level
statistics do not display level repulsion, and the expectation
values of operators in the eigenstates of the (effective)
Hamiltonian fluctuate wildly from eigenstate to eigenstate.
In a delocalized phase, the opposite is true: the levels repel
each other, and the expectation values of physical, local
operators in nearby energy or quasienergy states are similar.
Other definitions are possible and, in general, equivalent

TABLE I. Effect of driving frequency in the presence of and in
the absence of a mobility edge.

Mobility edge Low frequency High frequency

Present Delocalized Delocalized
Absent Delocalized Localized
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(see, e.g., Ref. [14]). The connection between the eigen-
states of Heff and the applicability of ETH was elucidated
in Ref. [8]. The framework developed there turns out to be
natural for discussing the case of a system which, in the
absence of driving, is in the MBL phase.
No mobility edge: Local model.—Let us introduce a

model of interacting hard-core bosons described by a
driven, local Hamiltonian [Eq. (1)] with

H0 ¼ Hhop þ
X2
r¼1

Vr

XL−1
i¼1

niniþr þ
XL
i¼1

Uini; ð3Þ

where Hhop ¼ ½− 1
2
J
P

L−1
i¼1 ðb†i biþ1 þ b†iþ1bi þ H:c:Þ� is a

hopping operator, the b are hard-core bosonic operators, Ui
an on-site random potential uniformly distributed between
−w and þw, and HDðtÞ a time-periodic hopping term

HDðtÞ ¼ δ~δðtÞHhop; ð4Þ

with δ a dimensionless constant, ~δðtÞ ¼ −1ðþ1Þ in the first
(second) half of each period T ¼ 2π=ω. Via Jordan-Wigner
transformations, this model is related to a fermionic
interacting system as well as to a spin-1=2 chain.
Throughout this work we will concentrate on the specific
case V1=J ¼ V2=J ¼ 1, although our qualitative conclu-
sions are not sensitive to this.
To locate the transition in the undriven model, we use

the standard technique [3] involving finite-size scaling of
the level statistics (see inset of Fig. 2 and Supplemental
Material [15]). At half filling there thus appears to be a
transition at a disorder amplitude wu

c=J (≈6 for our
interaction parameters V1=J ¼ V2=J ¼ 1) [18].
We now drive this system δ ≠ 0. The level statistics of

the quasienergies of Heff [Eq. (2)] show level repulsion in
the clean limit [7] but are found to cross freely (indicating
localization) in the MBL regime if driven locally, as
reported in Ref. [9]. Here, we show that globally periodi-
cally driving the system in the MBL regime delocalizes
the system if the driving frequency is below a (system size
independent) critical value. We argue that this is a conse-
quence of the structure of the effective Hamiltonian for a
MBL system [19–23].
As established above, the undriven system is in the

delocalized phase for disorder amplitude w < wu
c ; driving

at this disorder is qualitatively similar to driving any
nonintegrable system [8], a case that has been studied in
Ref. [8]. We have indeed confirmed quasienergy level
repulsion for w < wu

c.
To study the MBL regime, w > wu

c , we switch on
periodic driving [Eq. (4)] with amplitude δ=J ¼ 0.1 (our
results do not change qualitatively for different δ provided
the system is large enough that the local level spacing is less
than δ). We directly calculateHeff and its level statistics. As
our central result we find that for each disorder amplitude
there exists a driving frequency ωcðwÞ above which the

system remains in the localized phase under driving
(see Supplemental Material [15]), while for ω < ωcðwÞ
the system delocalizes. This frequency is plotted in Fig. 1 as
a function of disorder amplitude w, while examples of the
level statistics results are shown in the inset of Fig. 2. We
expect ωcðwÞ to diverge as w approaches wu

c from above.
Having established a transition via the level statistics, we

now show in addition that the phases above (below) ωc do
(do not) satisfy the form of ETH discussed in Ref. [8],
further reinforcing our interpretation of ωc as a “delocal-
ization frequency.” We consider a localized undriven
system and provide in Fig. 2 direct evidence for the fully
mixed nature of the eigenstates of Heff for slow—but not

FIG. 1 (color online). Plot of driving frequency ωc below which
the system delocalizes as a function of disorder amplitude w. The
shaded areas correspond to delocalization. The red dots are
obtained from finite-size studies of the level statistics of the
system. The disorder amplitude wc is the value below which the
undriven system is delocalized in the absence of driving. The blue
line is a guide to the eye.

FIG. 2 (color online). Main plot: Probability distribution of the
EEVs of the density at site j ¼ 3. Left (right): Driving with a low
(high) frequency (see Fig. 1) results in the probability distributions
which does (does not) develop a central peak upon increasing
system size, signaling delocalization [8]. Data are disorder
averaged over 104 (100) realizations for L ¼ 14 (L ¼ 16). Inset:
Level statistics parameter versus inverse system size in the
localized (bottom, red) delocalized (top, blue) phases. The
parameter η ¼ R

dssPðsÞ with PðsÞ the probability distribution
of the level statistics [3,7], taking the value ηP=CUE in the localized
or delocalized regime. Data averaged over 1000 disorder realiza-
tions for L ¼ 8; 10; 12, 100 realizations for L ¼ 14.
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for fast—driving. The quantity under consideration is the
probability distribution for the eigenstate expectation val-
ues (EEVs) [8] of the density operator. Driving faster than
the delocalization frequency (right-hand panel) yields little
change in the probability distribution. By contrast, driving
slowly (left-hand panel), a central peak is seen to develop
with increasing system size, corresponding to the EEVs all
being equal and given by nj¼3 ¼ 0.5. This is the fully
mixed result for our system at half filling, corresponding to
delocalization [8].
In passing, let us remark that, since the EEVs of the

instantaneous Hamiltonian show the same behavior as in
Fig. 2 (data not shown), our localized phase is not unlike
the localization in energy space discussed in Ref. [24], even
though the underlying physics is quite different.
Physical picture.—We now relate our numerical findings

to a physical picture valid for weak driving. In the MBL
phase and in the absence of driving, the system is
effectively integrable in that there exist extensively many
local integrals of motion [19–23]. The system may thus be
thought of as a set of local subsystems, of finite spatial
extent, therefore of finite energetic bandwidth, as sche-
matically shown in Fig. 3. As a result, if the driving

frequency is larger than the typical local subsystem
bandwidth, the system cannot absorb energy from the
driving and does not react. Therefore, driving with a
frequency much higher than the typical local bandwidth
cannot destroy MBL. In contrast, low-frequency driving
may be understood by viewing our driving protocol as a
series of quenches: as MBL systems eventually reach a
steady state after an instantaneous quench [25,26], periodic
driving with the protocol we use can be thought of as a
series of nonadiabatic perturbations. It is quite natural then
to expect this to cause the system to spread in energy space,
delocalizing it.
Let us elaborate this pair of arguments, beginning with

high-frequency driving.
High-frequency driving.—The most general form of

HMBL consistent with known phenomenology such as
vanishing of the conductivity at all energies is

HG
MBL ¼

X
n

HðlÞ
n þ

X
m<n

HðlÞ
n VðlÞ

m;nH
ðlÞ
m …; ð5Þ

with theHðlÞ
n Hamiltonians for local subsystems (with local

spatial support) and n a spatial index indicating the site
about which the subsystem is centered [19–23]. Because
of its locality, each HðlÞ

n has a local spectrum of some
typical, finite width set by the disorder amplitude and
other system details and independent of the other blocks

(see Fig. 3, where the spectra for three HðlÞ
n are sketched

schematically).
Driving HG

MBL with a sum of local terms such as in

Eq. (1) couples each HðlÞ
n to its neighbors [27] via terms

allowing energy and matter transfer. Consider a single
energy level for n ¼ 0 (middle block, Fig. 3), indicated by
the red line in the middle block. A time-independent
coupling between the blocks couples it to the green blocks
on each side, while a periodic coupling with frequency ω
couples it to both the green and purple blocks by virtue of
folding the energy spectrum into the ω-periodic quasie-
nergies. Crucially, for ω larger than the typical width of the
blocks, folding the local spectra has no effect [28] and a
weak coupling does not delocalize the system, as it acts
similarly to a time-independent perturbation [29]. In other
words, the system can react to the driving by absorbing
energy quanta ω only if there exist levels separated by this
energy. In the presence of MBL the typical local bandwidth
sets the maximum driving frequency to which the system
can react [15].
Low frequency.—In the limit of low-frequency driving

disorder is effectively suppressed and the delocalized phase
is always reached.
This phenomenon is best understood in the time domain

as follows. Consider time evolving with Hamiltonian
H1ð2Þ for the first (second) half of the period. This series
of nonadiabatic changes to the system generically results
in a broadening of the energy distribution, provided that

FIG. 3 (color online). Schematic illustration of subsystems and
their energy levels in a MBL system. The horizontal axis indexes
the conserved quantity (increasing n corresponds to increasing
spatial index i); the vertical indexes energy. ξc is some locali-
zation length, setting the typical spatial size of the subsystems. A
periodic coupling of the subsystems with frequency ω couples the
red state in the middle block to both the purple and the green
levels in the two neighboring blocks, while a time-independent
coupling would only couple it to the green ones. The width of the
purple and green strips is set by the amplitude of the driving.
Critically, the limit of ω greater than the typical subsystem
bandwidth is indistinguishable from a time-independent driving.
By contrast, the limit of ω → 0 collapses the local spectra, wiping
out the effect of disorder.
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the half-period T=2 is longer than the characteristic
relaxation time [25,26]. Typically, this eventually leads
to a fully mixed state occupying the entire Hilbert space
equiprobably.
There are two central ingredients to this argument.

The first is that the relaxation time does not diverge with
system size so that the half-period T=2 can be longer. The
existence of a dephasing time scale independent of system
size [25,26] ensures that this is the case. The second is
that repeatedly dephasing in the two different eigenstate
bases does lead to energy delocalization. Since H1;2 are
both MBL Hamiltonians, the eigenstates of one are in
general localized in terms of the eigenstates of the other.
Nevertheless, repeated cycles of dephasing to alternating
bases do indeed eventually lead to a fully mixed state, as is
shown in the Supplemental Material [15].
A mobility edge: QREM as a case study.—We now turn

to the case in which a mobility edge is present in the
undriven spectrum. Our central result is based on the
observation [8] that a periodic perturbation acting on a
system couples each undriven state to states spread uni-
formly throughout the spectrum ofH0. As a result, if part of
the spectrum corresponds to delocalized eigenstates, then
all eigenstates of Heff will necessarily be delocalized. We
numerically confirm this by studying the QREM, recently
studied in Ref. [31] where it was shown to have a mobility
edge. This model is described in Ref. [31]: it is defined
for N Ising spins with the Hamiltonian H ¼ EðfσzjgÞ−
Γ
P

jσ
x
j , where E is a random operator diagonal in the

σz basis (that is, it assigns a random energy to each spin
configuration) and Γ is a transverse field. Extensivity
of the many-body spectrum is satisfied if the random
energies are drawn from a distribution PðEÞ ¼
ð1= ffiffiffiffiffiffiffi

πN
p Þ expð−E2=NÞ.
The diagnostic of localization we use is the participation

ratio, defined for the state jψi as ϕ ¼ P
njhnjψij4, with n

enumerating Fock states. ϕ approaches unity for a state
localized on a single Fock state and 2−N for one fully
delocalized in the Fock space. The leftmost panel in Fig. 4
shows the average ϕ versus energy (scaled with system
size) of the 256 eigenstates of an undriven N ¼ 8 system
averaged over 1000 disorder realizations, demonstrating
the existence of a mobility edge.
Next, we drive the system by modulating ΓðtÞ ¼

Γ0ð1þ δ~δðtÞÞ, ~δðtÞ ¼ þ1 (−1) for the first (second) half
of the period with an amplitude δ ¼ 0.2 and frequency
ω ¼ 2π=T ¼ 0.1. The participation ratio of the eigenstates
ofHeff are shown in the lower panel of Fig. 4. As expected,
periodic driving causes delocalization of the entire spec-
trum so long as part of the undriven spectrum at the same Γ0

is delocalised.
Outlook.—We have shown that many-body systems can

remain many-body localized, with Poissonian level statis-
tics, when they are subjected to slow driving. On the
other hand, for fast driving or in the presence of a mobility

edge, delocalization will occur, with driving inducing level
repulsion.
This “classification” of the behavior of MBL systems

under driving immediately raises further questions. What
are the time scales involved in reaching the long-time state
we have discussed, how do they depend on the driving
amplitude and frequency, and how do they differ between
the localized and the delocalized limit? What is the precise
difference between local and global driving as far as both
the long-time state and the approach to it are concerned?
More broadly, we have concentrated on systems with a
bounded local spectrum. What happens if it is unbounded,
as in the cases of a continuum system or of a lattice boson
system? What if we bring the system in contact with a
heat bath?
We believe that the dual out-of-equilibrium situation—

driving and MBL—is only beginning to be explored and
will prove to be fertile ground for future research.

FIG. 4 (color online). Driving the QREM. The top left-hand
figure shows the participation ratio ϕ for the eigenstates of the
undriven model, showing a mobile region (blue) surrounded by a
localized region (red). Driving with frequency ω=J ¼ 0.1 and
amplitude δ=J ¼ 0.2 (top right) causes all states at a given Γ0 to
become as delocalized as the least localized state at that Γ0 in the
undriven model. This is also shown in the bottom panel, which
shows ϕ for Γ0 ¼ 0.01; 0.1; 0.5 (red, blue, and green lines, from
top to bottom) in the absence (presence) of driving with darker
(lighter) color. The driven points always lie below the undriven
points for the corresponding Γ0. This is due to the strong mixing
of all undriven eigenstates by the driving. All data in this figure
are for eight spins and averaged over 1000 disorder realizations.
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Note added.—Recently, two related works [32,33] have
appeared. Each of these takes a somewhat different
perspective, but they both establish phenomenologies
essentially consistent with the one we report.
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