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Topological crystalline superconductivity in locally noncentrosymmetric multilayer superconductors
(SCs) is proposed. We study the odd-parity pair-density wave (PDW) state induced by the spin-singlet
pairing interaction through the spin-orbit coupling. It is shown that the PDW state is a topological
crystalline SC protected by a mirror symmetry, although it is topologically trivial according to the
classification based on the standard topological periodic table. The topological property of the mirror
subsectors is intuitively explained by adiabatically changing the Bogoliubov–de Gennes Hamiltonian. A
subsector of the bilayer PDW state reduces to the two-dimensional noncentrosymmetric SC, while a
subsector of the trilayer PDW state is topologically equivalent to the spinless p-wave SC. Chiral Majorana
edge modes in trilayers can be realized without Cooper pairs in the spin-triplet channel and chemical
potential tuning.
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Topologically nontrivial phases of superconductors
(SCs) have evolved into one of the major research topics
of modern condensed matter physics recently [1–16]. A
characteristic feature of topological SCs is the fully gapped
bulk spectrum accompanied by topologically protected
gapless edge states. Many of the topological superconduct-
ing states are realized in odd-parity SCs, and one of the
most extensively studied examples is the chiral px � ipy-
wave SC [1,2]. However, only few materials are considered
as possible hosts of odd-parity superconductivity, because
the conditions for spin-triplet pairing are quite unfavorable
in most cases. So far, Sr2RuO4 [17] and some uranium-
based heavy fermion compounds [18,19] show strong
evidence for spin-triplet odd-parity superconductivity, but
unfortunately their superconducting gap might have nodes
on the Fermi surface. Recently, odd-parity topological
superconductivity in a doped topological insulator
CuxBi2Se3 has been proposed [13,16]; however, experi-
mental results are under debate [20,21].
In a recent study we showed that odd-parity super-

conductivity occurs naturally in multilayer systems with
layer-dependent spin-orbit coupling arising from the local
lack of inversion symmetry [22]. We will consider here
such locally noncentrosymmetric systems composed of the
blocks of superconducting layers, e.g., trilayer systems as
depicted in Fig. 1. Here the layer-dependent Rashba spin-
orbit coupling is responsible for unusual electronic and
superconducting properties [23]. The coupling constant of
the Rashba spin-orbit coupling shows the layer depend-
ence, ðα1; α2; α3Þ ¼ ðα; 0;−αÞ, ensured by the global
inversion symmetry. We have shown that in such a system
an odd-parity superconducting state can be stabilized
by a magnetic field, even if the zero-field phase is the

even-parity state (see Fig. 1) [22]. To be precise, the order
parameter in the spin-singlet channel changes sign between
the outermost layers in the field-induced superconducting
state (see Fig. 1). Considering the spatially modulating
order parameter in the trilayer, we call it the “pair-density
wave (PDW) state” [24]. Multilayer structures of this kind
are not only theoretical constructs, but have indeed been
produced recently, for example, in the artificially grown
superlattices CeCoIn5=YbCoIn5 [25–27] and in transition-
metal-oxide interfaces [28]. The PDW state is stabilized
when the three conditions, (a) a Pauli-limited SC, (b) quasi-
two-dimensional structure, and (c) large spin-orbit cou-
pling, are satisfied. These conditions are naturally satisfied

FIG. 1 (color online). Schematic figure of the trilayer system.
The filled (open) circles represent the 2D superconducting
(normal spacer) layers. The dashed line denotes the mirror plane.
Attached lists provide information on the layer-dependent Rashba
spin-orbit coupling and the order parameters in the BCS and
PDW states.
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in the heavy fermion superlattice CeCoIn5=YbCoIn5
[25–27]. Furthermore, recent technology has enabled the
artificial tuning of the superlattice structure [27]. Thus, we
may expect that the PDW state can be stabilized in a
superlattice CeCoIn5=YbCoIn5, although no experimental
evidence has been reported so far. In view of the exper-
imental and theoretical status, the discussion of topological
features of the PDW state is well motivated.
Topological aspects of the bilayer PDW state in the

absence of a magnetic field have been investigated by
Nakosai et al. [29]. They showed that the bilayer PDW state
is a topological state protected by a Z2 invariant when (and
only when) the Fermi level lies in the hybridization gap
between the bonding and antibonding bands. The field-
induced PDW phase in the multilayer system has not been
investigated in this respect so far.
First, we consider the topological properties of the PDW

state on the basis of the so-called topological periodic
table [4]. When time-reversal symmetry is broken by a
magnetic field, the symmetry class of the state is D. The
two-dimensional (2D) system in the class D is character-
ized by an integer topological number, the Chern number
[30,31]. However, the Chern number must be zero in the
time-reversal invariant system, and the magnetic field does
not change the Chern number without closing the gap.
According to the numerical analysis of the Bogoliubov–de
Gennes (BdG) equation, the magnetic field does not close
the gap in the PDW state [22]. Thus, this shows that the
field-induced PDW state is topologically trivial in terms of
the classification based on the topological periodic table.
On the other hand, recent developments in the classi-

fication scheme of topological phases shed new light on
topological phases protected by the crystal symmetry
[32–40]. “Topological crystalline SCs” have been classified
relying on the mirror, inversion, rotation, and magnetic
point group symmetry [35,37,39]. The spin-triplet super-
conducting-superfluid states in Sr2RuO4 [36], UPt3 [38],
and 3He [33] have been discussed from this point of view.
In this Letter, we will show that the spin-singlet PDW state
in trilayers is generally a topological crystalline SC
protected by a mirror symmetry. This is, to our knowledge,
the first proposal for the topological crystalline SC
without requiring the pairing interaction in the spin-triplet
channel.
We consider the mean-field BdG Hamiltonian for the 2D

multilayer SC,

H ¼
X

k;s;s0;m

½ξðkÞσ0 þ αmgðkÞ · σ − μBHσz�ss0c†ksmcks0m

þ t⊥
X

k;s;hm;m0i
c†ksmcksm0

þ 1

2

X
k;s;s0;m

½Δss0mðkÞc†ksmc†−ks0m þ H:c:�; ð1Þ

where k, s, and m ð¼ 1;…;MÞ are indices of momentum,
spin, and layer, respectively. We assume the simple dis-
persions ξðkÞ ¼ −2tðcos kx þ cos kyÞ − μ and gðkÞ ¼
ð− sin ky; sin kx; 0Þ. The latter describes the Rashba spin-
orbit coupling, whereby the coupling constant αm is layer
dependent. Nearest-neighbor layers are coupled by the
hopping matrix element t⊥. We focus on the intralayer
Cooper pairing which is relevant for 2D SCs, as realized in
CeCoIn5/YbCoIn5 superlattices [25–27] and δ-doped
SrTiO3 [28], although an interlayer Cooper pairing
has been considered for CuxBi2Se3 [13,16]. The layer-
dependent order parameter can then be parameterized by
Δ̂mðkÞ ¼ ½ψmðkÞ þ dmðkÞ · σ�iσy, where ψmðkÞ and dmðkÞ
represent the spin-singlet and spin-triplet components of
order parameters on the layer m, respectively. For simplic-
ity, we assume the Sþ p-wave pairing state, in which the
dominant s-wave order parameter ψmðkÞ ¼ ψm is mixed
with the spin-triplet p-wave component through spin-orbit
coupling and pairing interaction. The latter has the structure
dmðkÞ ¼ amð− sin ky; sin kx; 0Þ þ ibmðsin kx; sin ky; 0Þ,
obtained by solving the BdG equation [41]. In the follow-
ing we analyze the two competing solutions of the BdG
equation: (1) the “BCS state” with ψmðkÞ ¼ ψMþ1−mðkÞ
and dmðkÞ ¼ −dMþ1−mðkÞ and (2) the “PDW state”
where ψmðkÞ ¼ −ψMþ1−mðkÞ and dmðkÞ ¼ dMþ1−mðkÞ.
We now assume a pairing mechanism favoring spin-singlet
pairing, as often given by electron-phonon coupling or
antiferromagnetic spin fluctuation. Thus, the BCS state is
stabilized by the interlayer Josephson coupling at zero
magnetic field. However, the PDW state is stabilized by
spin-orbit coupling in the high magnetic field region at
sufficiently low temperatures [22].
Now we define the topological invariant of multilayer

SCs protected by mirror symmetry, by means of the mirror
Chern number. The BdG Hamiltonian is represented as,
H ¼ 1

2

P
kΨ

†
kHðkÞΨk with the use of Nambu operators

Ψ†
k ¼ ðc†ksm; c−ksmÞ in the 4 ×M dimension. The mirror

symmetry with respect to the central xy plane is obeyed,

M�
xyHðkÞM�†

xy ¼ HðkÞ: ð2Þ
M�

xy is the mirror reflection operator in the particle-hole
space [42]. We introduce Mþ

xy for the BCS state and M−
xy

for the PDW state, respectively. Equation (2) guarantees
that the BdG Hamiltonian can be block diagonalized in the
eigenbasis ofM�

xy. Thus, the system is divided into the two
subsectors corresponding to the block Hamiltonian H�

λ ðkÞ
with λ ¼ �i as eigenvalues of M�

xy. We now define the
mirror Chern number νðλÞ, as the Chern number of the
subsector Hamiltonian [33,36,42]. The topological
protection of the mirror Chern number is guaranteed
in some topological classes characterized by the
symmetries of subsector Hamiltonian H�

λ ðkÞ [4]. The
time-reversal, particle-hole, and chiral symmetry are
important here [42].
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For illustration we first discuss the bilayer system.
We obtain the subsector Hamiltonian for the λ ¼ i
sector as

H�
λ¼iðkÞ¼

� H0ðkÞþ t⊥σz �i½ψ−dðkÞ ·σ�σy
∓iσy½ψ�−d�ðkÞ ·σ� −H0Tð−kÞ� t⊥σz

�
; ð3Þ

where H0ðkÞ ¼ ξðkÞσ0 − μBHσz − αgðkÞ · σ. The subsec-
tor Hamiltonian for λ ¼ −i is obtained by changing the sign
of t⊥, as t⊥ → −t⊥. For the BCS state, although the
particle-hole symmetry in the original BdG Hamiltonian
is conserved, we cannot rely on this symmetry in the
subsector Hamiltonian unless the special condition
Hþ

λ¼iðkÞ ¼ Hþ
λ¼−iðkÞ, namely, t⊥ ¼ 0, is satisfied

(demonstrated in the supplementary material). On the other
hand, the chiral symmetry is conserved in this subsector at
H ¼ 0. Therefore, in the absence of a magnetic field the
symmetry class is AIII which is topologically trivial in 2D
[4]. If the chiral symmetry is broken by a magnetic
field, both subsectors belong to the class A, which is
characterized by an integer topological invariant [4].
However, both subsectors are topologically trivial,
νðλÞ ¼ 0, or the gap is closed under the realistic condition,
jψ j ≪ t⊥.
For the odd-parity PDW state, time-reversal symmetry in

the subsector Hamiltonian is ill defined for t⊥ ≠ 0, while the
particle-hole symmetry is conserved. Thus, the subsector
belongs to the symmetry class D unless ðt⊥; HÞ ¼ ð0; 0Þ.
Interestingly, each subsector is equivalent to the BdG
Hamiltonian of a 2D noncentrosymmetric superconductor
(NCSC) [44] with the fictitious magnetic field μBH � t⊥,
whose topological property has already been clarified
[6,8–10,12]. The dominantly spin-singlet pairing state
jdðkÞj < jψ j can be topologically nontrivial, when the
effective magnetic field μBH � t⊥ satisfies the conditionffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4t þ μÞ2 þ jψ j2

p
< jμBH � t⊥j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4t − μÞ2 þ jψ j2

p
,

[
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þ jψ j2

p
< jμBH � t⊥j <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4t − μÞ2 þ jψ j2

p
] for μ ≤

−2t [−2t < μ ≤ 0] [10]. Although great effort has
been devoted to the realization of this condition in
semiconductor devices [45], this condition needs fine-
tuning of the chemical potential and is rather unrealistic
in metals.
For H ¼ 0, this condition is indeed equivalent to the

criterion for a Z2 topological SC without relying on mirror
symmetry [29]. This means that the nontrivial Z2 topo-
logical number in the original BdG Hamiltonian (class
DIII) is obtained by the mirror Chern number of the
subsectors (class D). This is analogous to the fact that
some Z2 topological insulators are characterized by the spin
Chern number [46]. Our analysis sheds light on the analogy
between the 2D NCSC and the Z2 nontrivial bilayer SC,
the former being equivalent to a mirror subsector of the
latter. The interlayer coupling t⊥ plays the same role as
the magnetic field in the former. Although the Z2 number of
the original BdG Hamiltonian is not a topological invariant

in the presence of the magnetic field, the mirror
Chern number is topologically protected. Therefore,
the mirror Chern number is useful to indicate the
topological property of field-induced superconducting
states.
We now turn to the trilayer system to show the most

important results of this Letter. We consider the trilayer
structure conserving the mirror symmetry (see Fig. 1), and
adopt the layer-dependent Rashba spin-orbit coupling
ðα1;α2; α3Þ ¼ ðα; 0;−αÞ. The layer-dependent order
parameters are shown in Fig. 1. Using the mirror operator
with respect to the central xy plane, the BdG Hamiltonian
is again block diagonalized into the mirror subsectors.
We show the subsector Hamiltonian for the BCS state in
the Supplemental Material [42]. The subsector belongs to
the class A for H ≠ 0 and to the class AIII for H ¼ 0, if
t⊥ ≠ 0. We confirmed that the mirror Chern number is
zero or the gap is closed as in bilayers. Thus, topological
superconductivity is not realized in the BCS state. Indeed,
Fig. 2(a) shows no zero energy Majorana mode, indicating
the topologically trivial property.
In contrast, the PDW phase represents a topological

crystalline superconducting state. We obtain the subsector
Hamiltonian

FIG. 2 (color online). Energy spectra of (a) the BCS state and
(b) the PDW state with open boundaries at x ¼ 1 and x ¼ 200.
The solid and dashed lines in (b) show the Majorana edge modes
in λ ¼ i and λ ¼ −i subsectors, respectively. Thick (green) lines
show the edge states near the boundary x ¼ 1, while thin (red)
lines show the edge states near x ¼ 200. We take t ¼ 1, μ ¼ −2,
μBH ¼ 0.3, α ¼ 0.3, t⊥ ¼ 0.1, ψout ¼ ψ in ¼ 0.5, aout ¼ ain ¼
−0.05, and bout ¼ bin ¼ 0.1. (c) and (d) illustrate the wave
function of Majorana modes localized around x ¼ 1. The
amplitude of the spin- and layer-resolved wave function,
ϕsmðxÞ ¼ hx; smjE ¼ 0i, is shown. The Majorana state resides
dominantly on the center layer (m ¼ 2) with up spin for the
subsector λ ¼ i (c) and with down spin for λ ¼ −i (d).
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H−
λ¼iðkÞ ¼

0
BBBBBBBBBB@

ξ↑ðkÞ αkþ
ffiffiffi
2

p
t⊥ 0 −dout−ðkÞ −ψout

αk− ξ↓ðkÞ 0 0 ψout doutþðkÞffiffiffi
2

p
t⊥ 0 ξ↑ðkÞ −din−ðkÞ 0 0

0 0 −d�in−ðkÞ −ξ↑ðkÞ −
ffiffiffi
2

p
t⊥ 0

−d�out−ðkÞ ψ�
out 0 −

ffiffiffi
2

p
t⊥ −ξ↑ðkÞ αk−

−ψ�
out d�outþðkÞ 0 0 αkþ −ξ↓ðkÞ

1
CCCCCCCCCCA
; ð4Þ

for λ ¼ i. We denote ξsðkÞ ¼ ξðkÞ − ðσzÞssμBH,

k� ¼ sin ky � i sin kx, and doutðinÞ�ðkÞ ¼ dðxÞoutðinÞðkÞ�
idðyÞoutðinÞðkÞ. The subsector Hamiltonian for λ ¼ −i is shown
in the Supplemental Material [42]. Both subsectors belong
to the symmetry class D independent of the magnetic field,
if t⊥ ≠ 0. Therefore, the mirror Chern number is a
topological invariant. We obtain a nontrivial mirror
Chern number νðλ ¼ �iÞ ¼ ∓1, almost independent of
the parameters. In contrast to the bilayer PDW state, this
topologically nontrivial superconducting state is realized
without having to rely on a special choice of parameters.
Because the mirror Chern number is odd, the trilayer PDW
state is also a Z2 topological superconducting state at
H ¼ 0, although the magnetic field is required for the
thermodynamic stability of the PDW state [22].
An intuitive understanding of our result can be obtained

by adiabatically deforming the subsector Hamiltonian
H−

λ ðkÞ. The interlayer coupling t⊥ is decreased to zero
without closing the gap as long as the spin-triplet compo-
nent dinðkÞ is finite. The topology does not change through
this adiabatic deforming. Then, the finite mirror Chern
number originates from the decoupled 2 × 2 matrix in the
center of the 6 × 6 matrix of Eq. (4), which denotes a
spinless chiral p-wave SC. It has been shown that the
spinless chiral p-wave SC is topologically nontrivial [1]
and the Chern number is �1. Indeed, we obtained the
nontrivial mirror Chern number νð�iÞ ¼ ∓1, which is
identified as the Chern number originates from the
decoupled 2 × 2 matrix in the limit t⊥ → 0. Now it became
apparent that no fine-tuning of the chemical potential is
needed. The other 4 × 4 matrix decoupled in the subsector
Hamiltonian describes the 2D Rashba-type NCSC which
has been proposed to be a topological s-wave SC [9,10,12].
However, we do not assume a fine-tuning of the chemical
potential which is required in their proposals.
We emphasize that the Cooper pairing in the p-wave

channel din=outðkÞ is not needed for the topological crys-
talline superconductivity, although it played an important
role in the intuitive explanation above. This is understood
from the fact that din=outðkÞ is decreased to zero without
closing the gap when the interlayer hopping t⊥ is finite
[22]. Thus, the topology is equivalent between the
Hamiltonian for t⊥ ¼ 0 and din=outðkÞ ≠ 0 (as in the above
intuitive explanation) and that for t⊥ ≠ 0 and din=outðkÞ ¼ 0

(as we consider here). This means that the topological
crystalline superconductivity is realized without any attrac-
tive interaction in the spin-triplet channel. Once the PDW
state is stabilized in the trilayer system, it is a topological
crystalline SC.
In order to verify the bulk-edge correspondence, we

show the presence of edge states in the trilayer SCs.
Figures 2(a) and 2(b) show the energy spectra of the
BCS state and PDW state, respectively, for a ribbon-shaped
system with open boundaries along the x axis and trans-
lational invariance along the y direction. Consistent with
the vanishing mirror Chern number, no subgap edge state
appear in the BCS state. In contrast, we find two chiral
Majorana edge modes in the PDW state. One comes from
the λ ¼ i subsector (solid lines) and the other comes from
the λ ¼ −i subsector (dashed lines). These modes are not
Kramers pairs, because the time-reversal symmetry is
broken by the magnetic field. We confirmed that the
presence of these Majorana modes is robust against the
change of parameters, such as variations of ψ in=out, ain=out,
bin=out, t⊥, α, and μ.
In Figs. 2(c) and 2(d), we show the spatial profiles of the

zero-energy Majorana modes localized around the edge. A
large probability density on the inner layer jϕs2ðxÞj ¼
jhx; s2jE ¼ 0ij is also shown. This means that the
Majorana state mainly originates from the inner layer, as
expected from the intuitive explanation discussed above.
In this Letter we have focused on 2D multilayer SCs, but

the topologically nontrivial properties also appear in the
three-dimensional (3D) system. When we take into account
an inter-multilayer coupling through normal spacer layers
(see Fig. 1) and consider the 3D Brillouin zone, the BdG
Hamiltonian conserves the mirror reflection symmetry
as M�

xyHðkx; ky; kzÞM�
xy ¼ Hðkx; ky;−kzÞ. Thus, the mir-

ror symmetry defined by Eq. (2) is satisfied in the mirror
invariant planes, kz ¼ 0 and π. We can define the mirror
Chern number in these 2D mirror invariant planes, and we
indeed obtain a nontrivial mirror Chern number at both
kz ¼ 0 and π for a small inter-multilayer coupling. We
confirmed that Majorana cones appear on [100] and [010]
surfaces where the mirror symmetry is conserved.
Analyzing topological properties of multilayer SCs we

found that the PDW state is a topological crystalline
superconducting phase protected by mirror symmetry.
We stress that a purely s-wave PDW state in trilayers
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can be a topological SC accompanied by the Majorana
fermion on its edge without the tuning of chemical
potential, which is necessary in the bilayer PDW state
[29] and the 1D and 2D NCSC [9,12]. This finding
significantly expands the possibility of realizing the topo-
logical SC because most SCs have a s-wave symmetry. It is
straightforward to extend our analysis to more than three
layers and we find that the PDW state is a topological SC
independent of parameters, if the number of layers is odd.
Thus, the design of the topological crystalline SC is feasible
for artificially grown multilayers using the available tech-
nology [25–28]. The superlattice CeCoIn5=YbCoIn5 [25] is
considered to be a Dþ p-wave SC, and will be similarly a
topological crystalline SC as will be discussed else-
where [47].
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