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We study the spin Hall effect (SHE) in disordered π-conjugated organic solids, where individual
molecules are oriented randomly and electrical conduction is via carrier hopping. The SHE, which arises
from interference between direct (i → j) and indirect (i → k → j) hoppings in a triad consisting of three
molecules i, j, and k, is found to be proportional to λðni × nj þ nj × nk þ nk × niÞ, where λ is the spin
admixture of π electrons due to the spin-orbit coupling and ni is the orientation vector of molecule i.
Electrical conductivity σqq (q ¼ x; y; z) and spin Hall conductivity σsh are computed by numerically
solving the master equations of a system containing 32 × 32 × 32 molecules and summing over
contributions from all triads in the system. The obtained value of the spin Hall angle Θsh is consistent
with experimental data in PEDOT:PSS, with a predicted temperature dependence of logΘsh ∼ T−1=4.
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The spin Hall effect (SHE), which enables a direct
conversion between an electric field and spin current [1],
is a fundamental material property critical to spintronic
applications and has been intensively studied in inorganic
materials in the last decade [2]. Recently the (inverse) SHE
has been successfully detected in organic devices, opening
an arena for manipulation and detection of pure spin current
[3,4] in organic spintronics [5,6], a rapidly growing field
motivated by the weak spin-orbit couplings (SOCs) and
hyperfine interactions (HFIs) in organics [7].While the SHE
is adequately understood in crystalline inorganic materials,
little is known about the SHE in disordered organic solids,
where electrical conduction is via electron hopping. The few
theoretical works on the SHE in the hopping regime [8,9]
are confined to the Dresselhaus [10] and Rashba [11]
forms of SOC, which are suitable for crystalline inorganic
semiconductors but become inapplicable to the organics.
Furthermore, in these works, the SHE appears only at the
second order of SOC [8,9], which would render the SHE too
weak to be detected in organics. Here, using the newly
developed understanding of SOC in organics [12], we
derive the SHE in disordered π-conjugated organic solids.
It is found that the SHE originates from misaligned
orientations of π-conjugated molecules in a triad and is
present at the first order of SOC. The spin Hall conductivity
and electrical conductivity, obtained by exactly solving the
master equations in a large system, are consistent with
experiment. Our work suggests that the SHE in organic
solids may be tunable by controlling their morphology.
The organic materials used in devices are π-conjugated

molecules or oligomers in the form of dense films. The sp2

hybridization in a π-conjugated molecule results in its
planar structure, whose orientation can be characterized
by the vector normal to the molecular plane, ni ¼
ðsin θi cosϕi; sin θi sinϕi; cos θiÞT , with (θi;ϕi) being the
corresponding polar and azimuthal angles. The dense-film

form implies that the orientations of these molecules are not
identical. In the presence of SOC, the eigenstates of π
electrons in molecule i are not pure spin states and must
contain spin (and orbital) mixing [12],

jiþð−Þi¼ jpi~z↑ð↓Þiþ
ξ

2Δ
½−ðþÞisinθijpi~y↑ð↓Þi

þð−Þeþð−Þiϕi jpi~x↓ð↑Þiþ icosθieþð−Þiϕi jpi~y↓ð↑Þi�:

Here the subscript þð−Þ denotes the predominant spin
orientation of the state being parallel (antiparallel) to the
spin-quantization axis, which is fixed at the z axis through-
out the paper. pi ~q (q ¼ x; y; z) are the p orbitals in the local
coordinates so that pi~z always represents the π orbital and
pi~xð~yÞ represent σ orbitals, ξ is the atomic SOC, and Δ is the
energy splitting between π and σ orbitals. For a π electron
hopping from molecule i with orientation ni to molecule j
with orientation nj, the hopping amplitude hj�jVji�i≡ V̂ji
can be expressed in the 2 × 2 spin space as (see
Supplemental Material Ref. [13])

V̂ji ¼
X

q¼x;y;z

�
nqi n

q
j v

q
ji1̂− i

ξ

2Δ
σ̂qequvnui n

v
j ðvujiþvvjiÞ

�
; ð1Þ

where 1̂ is the unit matrix, σ̂q the Pauli matrix, equv the
antisymmetric unit tensor of rank three, and vqji the hopping
integral between two p orbitals at molecules i and j with
their orientations both along the q axis. By assuming
vxji ¼ vyji ¼ vzji ¼ V0

ji, Eq. (1) becomes V̂ji ¼ V0
ji½ni · nj1̂−

iλσ̂ · ðni × njÞ� with λ ¼ ξ=Δ. In a densely packed organic
solid, the molecular-orientation variation among neighbor-
ing molecules should be gradual (i.e., small angle θij
between ni and nj) to avoid an otherwise large steric force
[14]. Since ni · nj ≃ 1 − θ2ij=2 and ni × nj ≃ θij, to the first

order of θij, V̂ji is approximately
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V̂ji ≃ V0
ji½1̂ − iλσ̂ · ðni × njÞ�≃ V0

jie
−iλσ·ðni×njÞ: ð2Þ

Equation (2) indicates that because of the SOC and
misalignment of π orbitals among different molecules, an
electron attains an additional phase shift after each hop.
This phase shift, to the first order of SOC, does not alter the
hopping probability between two sites (a bond),
V̂ijV̂ji ¼ V0

ijV
0
ji, but will manifest itself in a triad, whose

importance in the hopping transport was first recognized by
Holstein when studying the Hall effect [15]. The product of
three hopping integrals over a triad loop contains a net
phase shift,

V̂ikV̂kjV̂ji ¼ V0
ikV

0
kjV

0
jið1̂ − iλσ̂ · NijkÞ: ð3Þ

Geometrically, Nijk ≡ ni × nj þ nj × nk þ nk × ni is twice
the area of a triangle with its vertices on the surface of a unit
sphere (Fig. 1), and it is finite when the molecular
orientations in a triad are different from one another, as
in a disordered organic solid. On the other hand, when the π
orbitals are all aligned, Nijk vanishes and so does the SHE.
We emphasize that it is this misalignment of π orbitals that
unveils the SHE at the first order of SOC, a physics not
captured before. Hence, the SHE in organics may be tuned
by controlling the degree of molecular alignment during the
film growth or deposition process. It should be noted that
the HFI, another important interaction influencing spin
dynamics in organics, cannot give rise to the SHE because
the HFI does not affect the hopping integral and causes no
interference among different electron paths [16,17].
Hopping electrical transport can be understood by

studying the change of real-space electron distribution in
the presence of external fields. Since the SHE involves spin
current, we express the general electron distribution at site i
as f̂i ¼ fci 1̂þ σ̂zfsi , with fci (fsi) being the charge (spin)
density and the spin-quantization axis along the z axis. In
equilibrium, the system is nonmagnetic and f̂i ¼
f0i 1̂≡ ½1þ eβðϵi−μÞ�−11̂, where ϵi is the electron energy
at site i, μ the Fermi level, and β ¼ 1=kBT, with kB and T

being the Boltzmann constant and temperature. In the
presence of an electric field, the dynamic of f̂i is described
by the master equation,

df̂i
dt

¼
X
j

�
f̂jð1 − f̂iÞ

�
wji þ

X
k

ð1 − f̂kÞσ̂zwe
jki

�

− f̂ið1 − f̂jÞ
�
wij þ

X
k

f̂kσ̂zwh
jki

��
; ð4Þ

where wij is the direct electron hopping probability from
sites i to j or, equivalently, the direct hole hopping from j to

i, and weðhÞ
jki ∝ λNz

jki is the indirect hopping probability from
j to i for the electron (hole) through an intermediate site k.
The first (second) term on the right-hand side of Eq. (4) is
the total electron (hole) hopping from j to i. For generality,
the applied electric field has a finite frequency ω, and the
dc transport properties can be obtained in the limit
ω → 0.
In the linear-response regime, the change in electron

distribution, δf̂i ≡ f̂i − f01̂, is small and can be charac-
terized by a deviation in its electrochemical potential from
the Fermi level μ in equilibrium, δμ̂i,

δf̂i ¼ βf0i ð1 − f0i Þδμ̂i ≡ βf0i ð1 − f0i Þðδμci þ σ̂zμ
s
iÞ: ð5Þ

The electric field affects the hopping via wji=w0
ji ¼

we
jik=w

e0
jik ¼wh0

jik=w
h
jik ¼ 1−βeE · ðRj−RiÞ=2, where w0

ji,

we0
jki, and wh0

jik are the values wji, we
jki, and wh

jik in
equilibrium, and Ri gives the coordinates of site i.
Accordingly, the master equations in Eq. (4) reduce to
coupled linear equations of δμci and μsi ,

iωCi
μsi
e
¼

X
j

μsj − μsi
eZij

þ e2β
X
jk

VjW
z
jki; ð6Þ

iωCi
δμci
e

¼
X
j

Vj − Vi

Zij
þ eβ

X
jk

μsjW
z
jki: ð7Þ

Here Vi ¼ δμci =e − E · Ri, Ci ¼ e2βf0i ð1 − f0i Þ, Z−1
ij ¼

e2βf0i ð1 − f0jÞw0
ij ¼ e2βf0jð1 − f0i Þw0

ji, which is symmetric
under the interchange of i and j, and the effective three-site
hopping probability,

Wz
jki ≡ f0jð1 − f0i Þð1 − f0kÞwe0

jki þ ð1 − f0jÞf0i f0kwh0
jki; ð8Þ

is antisymmetric under the interchange of any pair of
subscripts. Once the solutions μsi and δμ

c
i are found, the spin

current is evaluated according to its definition,

js ≡ e
Ω

X
i

Ri
dfsi
dt

¼ iω
Ωe

X
i

RiCiμ
s
i ; ð9Þ

1
12

3
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φ
i
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n

FIG. 1 (color online). Triad with three molecules oriented along
ni (i ¼ 1; 2; 3). The SHE is proportional toN123=2, the area of the
triangle formed by (θi,ϕi) on a unit sphere.
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with Ω being the volume of the system, and the spin-Hall
conductivity can be obtained via σsh ¼ jsy=E, with jsy being
the y component of js and E along the x axis.
Equations (6) and (7) reveal the key role played by the

three-site hopping Wz
jkl in both the SHE and ISHE.

Through Wz
jkl, a change in Vi due to an applied electric

field can result in a change in spin distribution μsi and
therefore a spin current, i.e., the SHE, and conversely, a
change in μsi , can lead to a change in δμci or an electric
motive force, i.e., the ISHE.
To reliably calculate the dc SHE in a disordered system,

proper summation and average over a large system are
essential. In the literature of the hopping Hall effect, the
common approach is to identify “representative” triads that
control the overall properties of the entire system [18],
which involves uncontrollable approximations. Here,
instead, we numerically solve the master equations exactly
in a sufficiently large system, which is conceptually simple
with a guaranteed accuracy. For a system consisting of N
molecules, Eqs. (6) and (7) have approximately 2N
equations, which can be reduced to two sets ofN equations
if the three-site hopping is treated as a perturbation. We
can then solve Eq. (7) without the three-site terms and
denote the obtained solution as V0x

i and V0y
i for E along

the x and y axes, respectively. The solution to Eq. (6)
after Wz

ijk is included can be written as μsi ¼
e2β

P
jkl½ðgþ iωcÞ−1�ijV0x

j Wz
jkl, where matrices gij ≡

Z−1
ij − δij

P
kZ

−1
ik and cij ≡ Ciδij. Since yi is related to

V0y
i via yi ¼ ðiωEÞ−1C−1

i ðgþ iωcÞijV0y
j , the spin

current jsy in Eq. (9) is jsy ¼ iωðΩEÞ−1PiyiCiμ
s
i ¼

−βe2ðΩEÞ−1PjkiW
z
jkiV

0y
j V0x

i . Using the antisymmetric
property of Wz

ijk, σsh can be expressed as

σsh ¼ −
e2β
6ΩE2

X
ijk

Wz
ikj½ðV0

i − V0
kÞ × ðV0

k − V0
jÞ�z; ð10Þ

where the projections of V0
i on the q axis give the

electrochemical potentials for the case when the external
field E is directed along the q axis. This expression
generalizes that due to Butcher and Kumar for calculating
the Hall mobility [19]. Note that Eq. (10) is independent of
ω and can therefore be used to calculate the dc SHE, in
which V0

j is the solution to 0 ¼ P
jZ

−1
ij ðV0

j − V0
i Þwith a dc

bias applied along the corresponding axes. The obtained V0
i

can also be used to evaluate the dc electrical conductivity of
the system via [19]

σqq ¼
1

2ΩE2

X
ij

Z−1
ij ðV0q

i − V0q
j Þ2: ð11Þ

Experimentally the organic material where the ISHE
was first observed is poly(3,4-ethylenedioxythiophene):
poly(styrenesulfonate) (PEDOT:PSS) [3]. The I − V

characteristics of this material are found to be linear [3],
indicating that the electrical conductivity is independent of
bias and that carriers must exist before a bias is applied.
Thus, the system should have a large density of states near
the Fermi level. Moreover, the measured temperature
dependence of the conductivity in PEDOT:PSS [20]
follows the Mott’s variable range hopping (VRH),
log σxx ∼ T−1=4, through an impurity band [21]. The impu-
rity-band transport was also proposed to explain many
properties of charge and spin transport in organic spintronic
devices [22]. In addition, recent experimental and theo-
retical studies [23,24] suggest that bipolaron formation in
PEDOT is unimportant. This evidence suggests that the
hopping probability in PEDOT:PSS has the Miller-
Abrahams form [25], where electron-phonon coupling is
treated perturbatively,

Z−1
ij ¼ νe−2αRjie−ðβ=2Þðjϵi−μjþjϵj−μjþjϵjijÞ: ð12Þ

Here the hopping integral V0
ji is assumed to exponentially

decay with the hopping distance Rji ¼ jRj − Rij,
V0
ji ¼ V0e−αRji , with α−1 being the localization length of

π-electron wave functions in the molecules, ϵji ¼ ϵj − ϵi,

and ν ¼ πV2
0γ̄

2=ℏ2 with γ̄2 depending only on the electron-
phonon coupling γ and phonon properties. By using the
same weak electron-phonon approximation, the three-
site hopping probability (see Supplemental Material
Ref. [13]) is

Wz
jki ¼

λNz
jki

V0

ℏν2e−αðRjkþRkiþRijÞ
�
exp

�
−
β

2
ðjϵj − μj

þ jϵk − μj þ jϵjij þ jϵkijÞ
�
þ i⇌jþ i⇌k

�
: ð13Þ

In our numerical calculations, the system consists of
32 × 32 × 32 molecules forming a cubic lattice with a
lattice constant of a. The site energy ϵi is uniformly
distributed in the interval [−ϵ0=2, ϵ0=2], reflecting the
disordered environment of the molecules, and the Fermi
level μ in equilibrium is set to zero; i.e., the system has a
finite density of state at the Fermi level, as in PEDOT:PSS.
αa is fixed at 2; i.e., the electron wave functions can extend
to neighboring sites, consistent with the relatively delocal-
ized wave functions observed from infrared-absorption
spectra [26]. Since the measured electrical transport in
PEDOT:PSS is anisotropic, this isotropic lattice should be
regarded as an “averaged” structure of PEDOT:PSS, with
the electrical conductivity being the geometric mean
of two conductivities along the x and y axes. The SOC
parameter λ is estimated as 10−3, from the value of T6,
which has a very similar structure as PEDOT [12].
Individual molecular orientations are random. Hopping
between any bond (i,j) and among any triad (i, j, k), Z−1

ij
and Wz

jki in Eqs. (12) and (13), in the entire lattice is
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allowed. Hence, possible VRH is automatically included.
Nevertheless, the exponential decay in wave functions
allows us to introduce a cutoff in the hopping distance,
beyond which the hopping integral can be neglected. Such
a cutoff facilitates application of sparse-matrix techniques
in solving the master equations.
Figure 2 shows the calculated electric conductivity along

different directions, σxx and σyy, the spin Hall conductivity
σsh, and the spin Hall angle, Θsh ≡ σsh=ðσxxσyyÞ1=2 ¼
σsh=σqq [27], as a function of temperature for different
energy disorders, measured by ϵ0. It is seen that σxx and σyy
are virtually identical for various disorder strengths, indi-
cating that the system is sufficiently large and that the
numerical results are both convergent and reliable. The
logarithm of σqq, when plotted vs T−1=4, is linear over a
large temperature range, meaning that electrical transport in
the system is indeed VRH. At room temperature,
Θsh ∼ 10−7, in good agreement with the measured value,
and σqq ∼ 0.1–1 S=cm, close to the geometric mean of
measured conductivities, 1.6 × 10−3 and 660 S=cm along
the x and y axes [3]. In addition, we see that logðσsh;ΘshÞ ∼
T−1=4 and that as the disorder strength increases, the
temperature dependences in σqq, σsh, and Θsh are enhanced.
Figure 3, which displays distributions of the square of

hopping distance DðR2Þ and triad area DðAÞ at different
temperatures, further illuminates the VRH nature in this
system. The distributions are measured as DðR2Þ ¼P

ijjIijðR2
ij ¼ R2Þj=PijjIijj, where Iij¼Z−1

ij ðV0q
i −V0q

j Þ,
and DðAÞ ¼ P

ijkjWz
ijkðAijk ¼ AÞj=PijkjWijkj, where Aijk

is the area of the triad (i, j, k). We see that as the
temperature decreases, distributions DðR2Þ and DðAÞ
become broader and the peaks shift toward the larger

values. The averaged values, R2 ≡P
R2DðR2Þ and

Ā≡P
ADðAÞ, are both proportional to T−1=2, as shown

in Fig. 3(d), consistent with the VRH. The temperature
dependence of Θsh, according to Fig. 3(e), is weaker than
that of σxx.
The numerical results on σsh and Θsh can be understood

from Mott’s theory, where the conductance

Z−1 ∼ exp

�
−2αr −

ϵ0a3

ð4πr3=3ÞkBT
�

ð14Þ

reaches a maximum at the most probable hopping
distance, r̄ ¼ ½9ϵ0a3=ð8παkBTÞ�1=4, and accordingly σxx ∼
ðZ−1Þmax ∼ e−8αr̄=3 ¼ e−ðT0=TÞ1=4 with T0 ¼ 512ðαaÞ3ϵ0=
ð9πkBÞ. This expression of T0 would give a value of 1.0 ×
106 K for ϵ0 ¼ 0.6 eV and αa ¼ 2, which is close to the
value of 1.6 × 106 K, from fitting the results in Fig. 2 into
σqq ∼ exp½−ðT0=TÞ−1=4�. Both values are similar to the
experimental value of 3 × 106 in a PEDOT:PSS system
[20]. Expressing Eq. (13) as

Wz ∼ exp
�
−3αr −

2ϵ0a3

ð4πr3=3ÞkBT
�
; ð15Þ

and substituting r by r̄, we estimate σsh and Θsh as

σsh ∼Wz ∼ e−13αr̄=3; Θsh ¼
σsh
σqq

∼ e−5αr̄=3: ð16Þ

Since r̄ ∼ T−1=4, both log σsh and logΘsh are proportional to
T−1=4. The exponential inΘsh, 5αr̄=3, is smaller than that in
σqq, 8αr̄=3, which explains the weaker temperature

FIG. 2 (color online). Electrical conductivity σxx (a) and σyy (b),
spin Hall conductivity σsh (c), and spin Hall angle Θsh (d) as a
function of T−1=4 for different values of energy disorder ϵ0. Solid,
dashed, and dot-dashed lines correspond to ϵ0 ¼ 0.6, 0.4, and
0.2 eV, respectively. The parameters are αa ¼ 2, λ ¼ 10−3,
ν ¼ 3 × 1011 s−1, and V0 ¼ 0.1 eV.

FIG. 3 (color online). DðR2Þ (bars) and DðAÞ (circles) for

T ¼ 300 (a), 120 (b), and 40 K (c). (d) R2 (circles) and Ā
(squares) as a function of T−1=2. (e) Comparison of temperature
dependences in Θsh (squares) and σxx (circles). σ0 and Θ0 are the
values of σxx and Θsh at T ¼ 320 K. The energy disorder is
ϵ0 ¼ 0.6 eV. Other parameters are as in Fig. 2.
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dependence in Θsh than in σqq. As ϵ0 decreases, which
corresponds to an increase in the density of states at the
Fermi level, ðϵ0a3Þ−1, or the doping, T0 will decrease, and
consequently, both Θsh and σqq will increase and exhibit a
weaker temperature dependence.
In summary, we have developed a theory of the SHE in

disordered organic solids. The SHE is found to occur at the
first order of SOC, due to misalignment of π-conjugated
molecules in a disordered solid. We have numerically
solved the transport equations in a large system and
summed over all triads to obtain the spin Hall conductivity.
The calculated values of the spin Hall angle and electrical
conductivity are consistent with experimental measure-
ments. Our theory suggests a tunable SHE in organic
solids via their morphology.
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