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We propose a family of structures that have “Dirac loops,” closed lines of Dirac nodes in momentum
space, on which the density of states vanishes linearly with energy. Those lattices all possess the planar
trigonal connectivity present in graphene, but are three dimensional. We show that their highly anisotropic
and multiply connected Fermi surface leads to quantized Hall conductivities in three dimensions for
magnetic fields with toroidal geometry. In the presence of spin-orbit coupling, we show that those
structures have topological surface states. We discuss the feasibility of realizing the structures as new
allotropes of carbon.
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Introduction.—In honeycomb lattices, the existence of
the Dirac point results from the planar trigonal connectivity
of the sites and its sublattice symmetry [1]. Less well
known are “Dirac loops,” three dimensional (3D) closed
lines of Dirac nodes in momentum space, on which the
energy vanishes linearly with the perpendicular
components of momentum [2]. To date there are no
experimental observations of Dirac loops, and they were
predicted to exist only in topological superconductors [3]
and in 3D semimetals [4] in which the parameters such as
interactions and magnetic field are finely tuned [2].
Theoretically, graphene is not the only possible lattice

realization with planar trigonally connected atoms [5]. It is
therefore natural to ask if there are variations on the
honeycomb geometry that might produce exotic Fermi
surfaces with Dirac-like excitations and topologically non-
trivial states. In this Letter, we propose a family of
trigonally connected 3D lattices that admit simple tight-
binding Hamiltonians having Dirac loops, without requir-
ing any tuning or spin-orbit coupling. Some of these
structures lie in the family of harmonic honeycomb lattices,
which have been studied in the context of the Kitaev model
[7–11], and experimentally realized in honeycomb iridates
[12]. The simplest example is the hyperhoneycomb lattice,
shown in Fig. 1(a).
We derive the low energy Hamiltonian of this family of

systems, and analyze the quantization of the conductivity
and possible surface states. Even though these systems are
3D semimetals, their Fermi surface is multiply connected,
with the shape of a torus, and highly anisotropic. When a
magnetic field with toroidal geometry is applied, we find
that the Hall conductivity is quantized in 3D at sufficiently
large field. Additional spin-orbit coupling effects can create
topologically protected surface states in these crystals. We
claim that in the presence of spin-orbit coupling, these
structures conceptually correspond to a new family of
strong 3D topological insulators [13,14]. We finally discuss

the experimental feasibility of realizing those structures as
new allotropic forms of carbon.
Tight-binding lattice.—Our discussion starts with the

simplest structure, the hyperhoneycomb lattice [see
Fig. 1(a)]. All atoms form three coplanar bonds spaced
by 120°. The tight binding basis is of the form ψα;kðrÞ ¼
ϕαðkÞeik·r, with α ¼ 1; 2; 3; 4 labeling the components of a
four vector Φk, which describes the amplitudes of the
electronic wave function on the four atoms in the unit cell.
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FIG. 1 (color online). Simple lattice structures where all atoms
are connected by three coplanar bonds spaced by 120°. (a) The
hyperhoneycomb lattice (H-0), with a four atom unit cell. Atoms
1, 2, and 3 (xy plane); atoms 2, 3, and 4 (yz plane). Atoms 1 and 2
form a vertical chain (black links); atoms 3 and 4 form a
horizontal chain (blue links). The chains are connected by links
(red) in the z direction. (b) An eight atom unit cell (H-1). Atoms
1–4 create a vertical chain of hexagons along the x direction.
Atoms 5–7 create a horizontal chain when repeated in the y
direction.
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The tight binding Hamiltonian satisfies the eigenvalue

equation HΦk ¼ EΦk where Hα;β ¼ t
P

~δα;β
eik·~δα;β and t

is the hopping energy between nearest-neighbor sites sep-

arated by the vector ~δα;β connecting an atom of the kind α
with its nearest neighbor of the kind β. The sum is carried

over all nearest-neighbor vectors ~δα;β among any two given
species of sites, α and β. In explicit form,

Hαβ ¼ t

0
BBB@

0 Θx 0 e−ikza

Θ�
x 0 eikza 0

0 e−ikza 0 Θy

eikza 0 Θ�
y 0

1
CCCA; ð1Þ

where Θi ¼ 2eikza=2 cosð ffiffiffi
3

p
kia=2Þ with i ¼ x; y and a the

interatomic distance.
This Hamiltonian has a zero energy eigenvalue along the

curve defined by kz ¼ 0 and

4 cos ð
ffiffiffi
3

p
kxa=2Þ cos ð

ffiffiffi
3

p
kya=2Þ ¼ 1: ð2Þ

Equation (2) defines a zero energy line k0 ¼
(kxðϕÞ; kyðϕÞ; 0) shown in the solid white lines in Fig. 2(a),
where ϕ is the cylindrical polar angle with respect to
the center of the Brillouin zone (BZ) at the Γ point.
The reciprocal lattice is generated by the vectors
b1 ¼ ð2π= ffiffiffi

3
p

a; 0; π=3aÞ, b2 ¼ ð0; 2π= ffiffiffi
3

p
a;−π=3aÞ and

b3 ¼ ð0; 0; 2π=3aÞ, as shown in Fig. 2(b), and has four
high symmetry points, Γ; R; X, and Z. The 3D BZ has
fourfold rotational symmetry around the [001] direction.
The energy spectrum of Hamiltonian (1) has four bands,
shown in Fig. 2(c), where the two lowest energy bands are
particle hole symmetric and cross along the nodal lines, in
the kz ¼ 0 plane. The bands displayed in Fig. 2(c) follow
the path shown in the triangular line of panels (a), (b),
with the point R located in the middle of the flattened
corners of the BZ.
Projected Hamiltonian.—Expanding the Φ eigenvectors

around the nodal line and projecting the Hamiltonian (1) in
the two component subspace that accounts for the lowest
energy bands, the projected Hamiltonian can be written in
the Dirac-like form

HpðqÞ ¼ −½vxðϕÞqx þ vyðϕÞqy�σx þ vzðϕÞqzσz; ð3Þ

where q≡ kðϕÞ − k0ðϕÞ is the momentummeasured away
from the nodal line, σx, σz are 2 × 2 Pauli matrices (we set
ℏ → 1) and

�Ek ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vxðϕÞqx þ vyðϕÞqy�2 þ ½vzðϕÞqz�2

q
ð4Þ

is the low energy spectrum. The quasiparticles of
Hamiltonian (3) are chiral in that there is a Berry phase

i
H hΦkj ~∇kΦkid~k ¼ π [15,16] associated with paths in
momentum space that encircle the nodal line.
The Fermi velocities viðϕÞ (i ¼ x; y; z) are plotted in

Fig. 2(d), and can be approximated by simple trigonometric
functions. The quasiparticles disperse linearly in the normal
directions to the nodal line [Fig. 2(e)] and are dispersionless
along the Dirac loop. In the cylindrical moving basis shown
in Fig. 2(e), the velocities are given by vzðϕÞ, vρðϕÞ, and
vϕðϕÞ. Even though the nodal line is not a perfect circle, the
ratio vϕðϕÞ=vzðϕÞ is small and oscillates between 0 and
0.19. Away from half-filling, the Fermi surfaces are
toroids containing the nodal line k0ðϕÞ, as shown in
Fig. 2(e). For small energies, the cross section is nearly
circular, and the energy varies linearly with the distance
from the loop. A similar analysis can be done for the unit
cell shown in Fig. 1(b), which has eight carbon atoms in the
unit cell. In that case, the tight binding Hamiltonian is an
8 × 8 matrix with eight different bands. This Hamiltonian
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FIG. 2 (color online). (a) BZ in the kz ¼ 0 plane showing the
Dirac loop lines (solid white). Black line, boundary of the BZ,
centered at the Γ point. (b) 3D Brillouin zone. Black arrows,
directions of the reciprocal lattice vectors bi, i ¼ 1; 2; 3. (c) En-
ergy spectra of the four bands of Eq. (1) in units of t plotted along
the path shown in the red line of panels (a) and (b). The low
energy bands cross along the Dirac loop. (d) Velocity of the
quasiparticles at the Dirac line in units of ta, as a function of the
cylindrical polar angle ϕ with respect to Γ. In cylindrical
coordinates are red, vzðϕÞ; black, vρðϕÞ; blue, vϕðϕÞ. The orange
and violet curves describe vxðϕÞ and vyðϕÞ, respectively. (e) Red
arrows, cylindrical moving basis around the line of Dirac nodes.
Toroidal Fermi surfaces for energies E=t ¼ 0.1; 0.2; 0.3, and 0.4
around the Dirac loop.
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can be projected into the low energy states, resulting in a
Hamiltonian with the same form as Eq. (3).
The above structures are merely two in a hierarchy of

possible lattices that can be made with perpendicular zigzag
chains of trigonally connected carbon atoms. We denote
these structures with two integers ðnx; nyÞ, where nx (ny) is
the number of vertical (horizontal) complete honeycomb
hexagons contained in the unit cell. In this notation, the
hyperhoneycomb lattice shown in Fig. 1(a) describes a
(0,0) lattice, while Fig. 1(b) has one complete honeycomb
hexagon along both the vertical and horizontal zigzag
chains in the unit cell, and hence is a (1, 1) structure.
The symmetric higher order structures ðn; nÞ belong to the
family of harmonic honeycomb lattices, denoted as H-n,
with n ∈ N [12]. In this family, the screw axis symmetry is
preserved and they all display Dirac loops at zero energy
around the Γ point, with the H-0 case shown in Fig. 1(a)
being the simplest atomic chain arrangement. In the n → ∞
limit, those structures describe a single layer of graphene.
Asymmetric structures where nx ≠ ny have a very aniso-
tropic unit cell and their nodal lines are displaced in the BZ.
The simplest Hamiltonian that captures the physics

described in Hamiltonian (3) is a minimal model where
we approximate the nodal line (2) by a circle with the
average radius k0 ≡ hkρðϕÞi ≈ 1.61a−1. The in-plane
velocity is independent of the angle ϕ,

H0ðqÞ ¼ −vρqρσx þ vzqzσz; ð5Þ

where qρ ¼ kρ − k0, is a small variation in the cylindrical
radial momentum k2ρ ≡ ðk2x þ k2yÞ away from the radius
of the nodal line, and vρ ≡ hvρðϕÞi ∼ 1.22ta, and vz≡
hvzðϕÞi ∼ 1.32ta, are the average velocities in the ρ̂ and ẑ
directions. When the nodal line is a perfect circle, vϕ ¼ 0.
The density of states per volume varies linearly with the
energy DðEÞ ¼ k0E=ð2πvρvzÞ, including a factor of 2 for
the spin degeneracy.
Charge transport.—For short range impurities, the dc

conductivity can be calculated self-consistently at zero
temperature [17]. Going back to the projected Hamiltonian
(3), we define the Green’s function ĜkðωÞ¼ ½ω−HpðkÞ−
Σ̂ðωÞþ i0þ�−1, where the 2 × 2 matrix Σ̂ðωÞ ¼ V2

0

P
k

ĜkðωÞ is the self-energy due to a local quenched disorder
potential V0 [18].
At zero frequency, the self-consistent solution of the

self-energy Σ̂ð0Þ ¼ iΓ is diagonal and purely imaginary,
with Γ the scattering rate. In the minimal model (5),
Γ ≈ t expf−1=½V0DðV0Þ�g. The dc conductivity in the
direction n̂ is σn̂ð0Þ ¼ e2tr

P
kv̂n̂Âðk; 0Þv̂n̂Âðk; 0Þ, where

Âðk; 0Þ ¼ −2ImĜkð0Þ ¼ −2Γ=ðE2
k þ Γ2Þ is the static

spectral function, e is the electron charge, and v̂n̂ ¼ n̂ ·
∇qHp is the velocity operator projected along the n̂
direction.

In 3D, the conductivity has units of e2=h divided by
length (restoring ℏ) [19,20]. When Γ ≪ t, the conductivity
is independent of the scattering rate, as expected [21],
and gives

σn̂ð0Þ ¼
Cn̂

a
e2

πh
; ð6Þ

per spin, where Cn̂ is a nonuniversal dimensionless
geometrical factor. In the H-0 lattice,

Cz ≈ 1.79; Cx ¼ Cy ≈ 0.75: ð7Þ

In the minimal model (5), Cz ¼ k0avz=vρ ∼ 1.76, while
Cρ ¼ 3k0avρ=ð8vzÞ ∼ 0.55 for transport along any direc-
tion in the plane of the Dirac loop, in qualitative agreement
with (7). Those values contrast with the theoretical con-
ductivity (per spin) of Dirac fermions in 2D for unitary
disorder, σð0Þ ¼ e2=ðπhÞ [21,22].
3D quantum Hall effect.—In the presence of a uniform

magnetic field, the minimal model (5) becomesH0ðρ; zÞ ¼
vρσxði∂ρ − AρÞ − vzσzði∂z − AzÞ, where A¼AzẑþAρρ̂þ
Aϕϕ̂ is the vector potential. In this model, a toroidal
magnetic field Bϕϕ̂ pointing along the Dirac loop corre-
sponds in the symmetric gauge to a vector potential
A ¼ −Bϕρẑ. Such a field can be created with a time
dependent electric field applied along the ẑ direction.
Taking the square of the Hamiltonian (5),
H2

0ðξÞ ¼ ð ffiffiffiffiffiffiffiffiffivρvz
p =lBÞ½ðξ2 − ∂2

ξÞσ0 þ σy�, where σ0 is the

identity matrix, ξ≡ ffiffiffiffiffiffiffiffiffiffiffiffi
vz=v0

p ðρ=lB − kzlBÞ is a dimension-
less coordinate, and lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

h=Bϕe
p

is the magnetic length.
Rewriting the Hamiltonian in terms of ladder operators
of the 1D Harmonic oscillator, a ¼ ðξþ ∂ξÞ=

ffiffiffi
2

p
and

a† ¼ ðξ − ∂ξÞ=
ffiffiffi
2

p
, the energy spectrum has a zeroth LL

and is the same as in conventional 2D Dirac fermions in a
magnetic field,

EN ¼ sgnðNÞð ffiffiffiffiffiffiffiffiffiffiffiffi
2vρvz

p
=lBÞ

ffiffiffiffiffiffiffi
jNj

p
; ð8Þ

where N ∈ Z.
Although being a 3D semimetal, in a perfectly circular

Dirac loop, the system has a 3D quantum Hall effect
[23–25] at any magnetic field Bϕ. In more conventional
field geometries, the Hall conductivity of 3D crystals
was shown by Halperin [23] to be in the form σij ¼ e2=
ð2πhÞϵijkGk, where ϵijk is the antisymmetric tensor and G
is a multiple of some reciprocal lattice vector (it could also
be zero). Following the Thouless-Kohmoto-NIghtingale-
Nijs analysis [26], a necessary and sufficient requirement
for quantized Hall conductivities in general is that the band
structure will open insulating bulk gaps at finite applied
magnetic field, and that the Fermi level will lie in one of
those gaps. In 3D, the quantum Hall effect has been
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observed or predicted before only in systems with extreme
anisotropies [27,28], or else in strongly anisotropic
systems with Dirac quasiparticles, such as Bernal stacked
graphite [25], which are more easily susceptible to LL
quantization.
In the toroidal geometry of the magnetic field, each Dirac

cone in the loop contributes with ðN þ 1
2
Þe2=h quanta per

spin to the Hall conductivity. In cylindrical coordinates, for
a circular nodal line,

σzρ ¼ 2
e2

h

Z
dk3

ð2πÞ3 Imh∂kρΦkj∂kzΦki

¼ ð2N þ 1Þ e
2

h

Z
dϕ
2π

k0 ¼ ð2N þ 1Þk0
e2

h
; ð9Þ

accounting for the spin degeneracy 2, while σρϕ ¼ 0.
Hence, in the presence of a Bϕϕ̂ field, a radial current
along the ρ̂ direction creates a voltage difference along the ẑ
direction and vice versa. By adiabatic continuity, the Hall
conductivity is invariant under deformations of the nodal
line (up to a trivial scaling), provided that the LL gaps do
not close completely. Hence, nodal lines with nearly
circular shape will show quantized Hall conductivities in
the toroidal field geometry whenever the Fermi level lies
in the energy gap, at finite magnetic field. This property
opens the prospect in the future for the observation of the
3D quantum Hall effect in other classes of systems that
prove to have Dirac loops as well.
Topological surface states.—In the presence of spin-orbit

coupling effects, the surface states can acquire topological
character. The spin orbit coupling can be included through
a trivial generalization of the Kane-Mele model [29,30]
for the H-n lattice, HSO

ij ¼ P
lit2ðdil × dljÞ~τ, where ij

are next-nearest-neighbor sites connected by two nearest-
neighbor vectors dil, ~τ ¼ ðτx; τy; τzÞ is a vector of Pauli
matrices acting in the spin space, and t2 ¼ ΔSO=ð3

ffiffiffi
3

p Þ gives
the spin-orbit coupling gap. The Rashba coupling is detri-
mental to the spin-obit coupling gap, but is expected to be
small when mirror symmetry in the plane of the atomic
bonds is preserved. In the H-0 lattice, the total Hamiltonian
is an 8 × 8 matrix in the Φk basis. In the general case,
the Hamiltonian of the H − n structure is a matrix with
23þn × 23þn components, including the spin.
In Fig. 3, we show the energy spectrum of the H-0

and H-1 crystals in the presence of a spin-orbit coupling
t2 ¼ 0.1t. We considered the geometry of an infinite slab
oriented along the y direction, with surfaces along the x and
z ones. The modes that cross zero energy are surface states
at the two [100] surfaces of the crystals. All structures have
two helical spin polarized modes per surface, which cross at
the center of the BZ, at the Γ point. Those surface modes
are topologically protected by Kramers theorem, and
describe a new possible family of strong 3D topological
insulators. Because of the fourfold symmetry of the BZ,
identical surface states can also be found in the two [010]

surfaces for a slab geometry rotated around the ẑ axis
by π=2. The [001] surfaces, nevertheless, do not have
those states.
Synthesis as a new carbon allotrope.—Because of π-π

orbital interactions between the chains, H-n lattices could
likely be realized as metastable allotropic forms of carbon
[6]. The planar trigonal bonding of the carbon atoms is,
nevertheless, quite robust. Simulations with Tersoff poten-
tials [31] indicate that hyperhoneycomb allotropes of
carbon atoms could be as stable as, or even more stable
than other metastable allotropes such as diamond.
Although synthesis of this new family of carbon allo-

tropes can be challenging, the H-0 allotrope could be
synthetized in a layer-by-layer fashion using monofunc-
tionalized carbon chains of atoms in the alkyne or alkynide
groups [32]. Those groups can be coordinated perpendicu-
larly to a surface, in a way as to allow epitaxial polym-
erization in the form of a monolayer of oriented chains [33].
Once the first layer is grown, the exposed functional groups
can be replaced with a new layer of functionalized chains
perpendicular to the first one [34]. The subsequent repeti-
tion of those two stages can lead to a 3D lattice of carbon
atoms deposited as a film on the substrate surface. A similar
method can be applied, for instance, to the H-1 allotrope
[35], as possibly to the entire family of harmonic structures.
The realization of topological surface states in those

carbon allotropes can be very difficult due to the smallness
of the spin-orbit gap, which is of the order of 0.1 meV
(t2 ∼ 10−4t), as in graphene [36]. Nevertheless, a substan-
tial enhancement of the gap can be achieved by chemically
doping those structures with adatoms such as thallium (Tl)
[37]. In graphene, Tl adatoms are expected to create a spin-
orbit gap of the order of 20 meV (t2 ≈ 0.02t) while keeping
the planar trigonal bonds of carbon intact and the Rashba
coupling parametrically small. We speculate that a similar
enhancement of the spin-orbit gap is possible in the 3D
structures as well, and will be considered somewhere else.
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FIG. 3 (color online). Energy bands in units of t in the presence
of a large spin-orbit coupling t2 ¼ 0.1t (see text). The crossed
lines at zero energy are topological surface states along the [100]
direction of the crystal. Left, H-0 crystal; right, H-1 crystal.
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Note added.—Recently, we became aware of the exper-
imental observation of a line of Dirac nodes in Ca3P2 [38]
and of related works on inversion symmetric crystals [39]
and graphene networks [40].
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